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Course Information (1)

NE 462 - Monte Carlo Techniques for Nuclear Systems - Description

Theory: Solving particle transport problems with the Monte Carlo method is simple - just simulate the 
particle behavior. The devil is in the details, however. These lectures provide a balanced approach to the 
theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte 
Carlo simulation methods, covering the transport equation, random sampling, computational geometry, 
collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality 
simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio 
calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and 
Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR 
modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion 
calculations, parallel calculations, and parameter studies.

Practice: This portion of the class focuses on using MCNP to perform criticality calculations for reactor 
physics and criticality safety applications. It is an intermediate level class, intended for those with at least 
some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting 
both geometry and results, and understanding the code output. The class includes lectures & hands-on 
computer use for a variety of Monte Carlo calculations. Beginning MCNP users are encouraged to review 
LA-UR-09-00380, "Criticality Calculations with MCNP: A Primer (3nd Edition)" (available at 
http://mcnp.lanl.gov under "Reference Collection") prior to the class.

Computing: No Monte Carlo class can be complete without having students write their own simple 
Monte Carlo routines for basic random sampling, use of the random number generator, and simplified 
particle transport simulation.
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Course Information (2)

NE 462 - Monte Carlo Techniques for Nuclear Systems - Description

• Three Credit Hours;   One 170-minute lecture per week.

• Textbook:   None
Supplemental materials:    a DVD provided to all students, containing:

Lecture notes for 17 lectures on the theory of Monte Carlo methods
Lecture notes for 19 lectures on the practical use of Monte Carlo methods
Lecture notes for 16 lectures on computing methods related to Monte Carlo
186 example problems for practical use of MCNP
737 technical reports on Monte Carlo methods, including tutorials, a complete introductory book, 
technical workshops, and references

Supplemental materials:   MCNP6 Monte Carlo code package. Students are required to obtain this (at 
no cost) from the US DOE computer code center, RSICC. The code is used for the practical part of the 
course in learning to apply Monte Carlo methods to nuclear engineering problems.

• Specific Course Information
Catalog description:  Monte Carlo methods for nuclear criticality and reactor analysis and radiation 
shielding calculation using production Monte Carlo codes, understand basics of probability and 
statistics and of particle transport in the context of Monte Carlo methods. 
Corequisite:   NE 410. 
Restriction:   admitted to School of Engineering.  
Required course in the program
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Course Information (3)

NE 462 - Monte Carlo Techniques for Nuclear Systems - Specific Goals

• Students should develop a basic understanding of Monte Carlo simulation techniques and be 
able to explain and discuss the following topics:
– Random number generation and random sampling methods used in the Monte Carlo simulation of radiation 

transport
– Basic statistical concepts including mean, variance, probability density function, cumulative distribution function
– 3-dimensional computational geometry used to represent physical systems
– Simulation of the basics physics interactions for particle collisions with the nuclides in problem materials
– Obtaining engineering results from tallies performed during the Monte Carlo simulation

• Students should develop a basic understanding of how Monte Carlo methods are applied to 
realistic nuclear systems and be able to explain and discuss the following topics:
– How Monte Carlo methods can be used to determine basic physical quantities including scalar flux, nuclear cross-

sections, material reaction rates with radiation
– How Monte Carlo methods can simulate basic aspects of nuclear systems, including the production of neutrons from 

fission, the slowing down process due to collisions with moderator material, and the capture and fission of neutrons 
in the thermal and resonance energy ranges

– General principles for applying Monte Carlo methods to realistic models of nuclear reactor systems and criticality 
safety analyses

• Students should develop a basic understanding of how Monte Carlo methods are implemented 
into computer codes:
– Demonstrate the ability to write simple Monte Carlo programs using a programming language they know (e.g., 

Matlab, C++, Fortran, etc.)
– Demonstrate the ability to perform realistic Monte Carlo calculations using an industry-standard Monte Carlo code 

(e.g., MCNP6)
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Course Information (4)

NE 462 - Monte Carlo Techniques for Nuclear Systems - Topics to be covered

• Overview of Monte Carlo methods

• Theory:
– Basics - Nuclear Engineering & Monte Carlo 
– Random Numbers & Random Sampling 
– Computational Geometry
– Collision Physics 
– Tallies & Statistics 
– Eigenvalue Calculations – Parts I, II
– Variance Reduction

• Practical:
– Introduction to MCNP 
– MCNP Basics 
– Criticality Calculations 
– Advanced Geometry 
– Sources
– Tallies 
– Physics & Nuclear Data
– Point Kinetics Parameters
– Sensitivity-Uncertainty Analysis 

• General:
– Eigenvalue Calculations – Part III 
– Parallel Monte Carlo 
– Parameter Studies
– Doppler Broadening
– Monte Carlo Depletion 
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Preliminaries (1)

• Monte Carlo Techniques for Nuclear Systems

– Introduction to Monte Carlo methods for particle transport simulation
– Limited to neutrons & photons
– Roughly  2/3 theory  &  1/3 practical

• Understand basic MC simulation techniques
– Random number generation, random sampling
– 3D computational geometry 
– Basic physics simulation & collisions
– Tallies

• Application to nuclear systems
– Flux, cross-sections, reaction rates
– Simple models
– Reactor models
– Criticality safety

• Computing
– Simple DIY MC programs
– Using MCNP for realistic models
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Preliminaries (2)

• Useful references & websites

– MCNP6 User Manual, part of MCNP6 distribution
– MCNP5 Theory Manual (Volume I), on class DVD & MCNP website
– Carter & Cashwell book, on class DVD & MCNP website

– MCNP website - mcnp.lanl.gov
– RSICC website - rsicc.ornl.gov

For ordering MCNP, SCALE, …..
– MCNP Forum email-list - see MCNP website

– National Nuclear Data Center, Brookhaven National Lab. - nndc.bnl.gov
ENDF nuclear cross-sections & plotting
Chart of the Nuclides

– Wikipedia ??? Maybe for class, not for work or papers

• Note
– In class or at work, you should always cite the sources for any physical data you 

use - cross-sections (ENDF/B-VI, -VII.0, VII.1, …), masses, isotopic abundances, 
etc.
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Nuclear Engineering Review
&

Monte Carlo Basics
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Outline

• Introduction

• Review of Nuclear Engineering basics
– Flux
– Cross-sections
– Reaction rates

• Monte Carlo – intro
– Linear Boltzmann Transport Equation
– Monte Carlo Simulation
– Criticality Calculations

• Review of statistics
– Basic Random Sampling
– Probability Density (PDF)
– Cumulative Distribution (CDF)
– Statistics
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Introduction

• John Von Neumann invented scientific computing in the 1940s
– Stored programs, "software"
– Algorithms & flowcharts
– Assisted with hardware design as well
– "Ordinary" computers today are called "Von Neumann machines"

• Von Neumann invented Monte Carlo methods for particle transport 
in the 1940s    (with Ulam, Fermi, Metropolis, & others at LANL)
– Highly accurate - no essential approximations
– Expensive - typically the "method of last resort"
– First MC code for ENIAC in 1947
– Monte Carlo codes for particle transport have been proven to work 

effectively on all types of computer architectures:

SIMD, MIMD, vector, parallel, supercomputers,  clusters,
workstations, PCs, netbooks,  tablets,
CPUs,  GPUs,  MICs, …
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Introduction

• Two basic ways to approach the use of Monte Carlo methods for 
solving the transport equation:
– Mathematical technique for numerical integration
– Computer simulation of a physical process

➜ Each is "correct"

- Mathematical approach is useful for:
Importance sampling,  convergence,  variance reduction, 
random sampling techniques,  eigenvalue calculation schemes, …..

- Simulation approach is useful for:
collision physics,  tracking,  tallying, …..

• Monte Carlo methods solve integral problems, so consider the 
integral form of the Boltzmann equation
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Introduction

Simple Monte Carlo Example

Evaluate

• Mathematical approach:
For  k = 1, …, N: choose        randomly in (0,1)

• Simulation approach, "darts game":
For  k = 1, …, N: choose            randomly in (0,1),

,   tally a "hit"

G = g(x)dx, with g(x) = 1− x2
0

1

∫

x̂k

G ≈ 1
N ⋅ g(x̂k ) = 1

N ⋅ 1− x̂k2
k=1

N

∑
k=1

N

∑

x̂k, ŷk
if    x̂2k + ŷ2k   ≤ 1

G ≈   number of hits
N

x

y

1

00 1

+ miss

+ hit

x

g(x)

1
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Review of NE Basics

• Flux
Φ = n v

– n  = particle density, particles/cm3 function of position
– v  = particle speed, cm/sec
– Φ = scalar flux, particles/cm2-sec function of position & energy

(but not direction)

– Most textbooks: 
Scalar flux is the total distance traveled by all particles,  per cm3, per sec

• Thought experiment:
– Suppose we could watch all particles as they fly around & have collisions

• Keep track of all the portions of flight distances
within a region G, for all the particles, for a second

• The total distance traveled divided by the volume 
& 1 second is the scalar flux in the region

⇒ This is how MC estimates the flux in a region.
This is the basis for a “pathlength estimator”

G
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Mean Free Path  &  Macroscopic Cross-section

• Mean Free Path,  λ
– λ =  average distance to collision

• Macroscopic Cross-section, Σ
Σ =  1 / λ =   N σ

– Probability of interaction with a material, per unit distance traveled

– N = nuclide density,  atoms/barn-cm, 

– σ = microscopic cross-section, target area per nuclide
units:    barns,     1 barn = 10-24 cm2

– Σ =  [nuclides/barn-cm] * [barns/nuclide] =  1 / cm

– For a mixture of nuclides,  add Σ's for each nuclide

 ΣT
UO2 =  NU 235σ T

U 235   +  NU 238σ T
U 238   +  NO16σ T

O16 +…

N =
Nav ⋅m
A ⋅V

=
Nav ⋅ ρ
A
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Macroscopic Cross-sections

• Material Cross-section

– Add  Nσ  for each nuclide,
for a particular reaction x
(x:   T,A,F,S,C,N-2N, …..)

– Given that a collision occurs in a material, 
the probability that it will involve nuclide J is:

⇒ This is how MC selects a particular nuclide, 
given that a collision occurs in a material

Σ x
mat = Ni ⋅σ x

i

i

  nuclides
in material

∑

pJ
mat =

ΣT
J

ΣT
mat

 

ΣT
UO2 =   ΣT

U 235 +   ΣT
U 238 +   ΣT

O16   +…

=   NU 235σT
U 235  +  NU 238σT

U 238  +  NO16σT
O16  +…
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Macroscopic Cross-sections

• If a neutron collision occurs in UO2 fuel, find the probability that 
the collision is with U235, U238, or O16

• If a neutron collision occurs in UO2 fuel, find the probability that 
the neutron is absorbed

ΣT
fuel = NU 235σT

U 235 + NU 238σT
U 238 + NO16σT

O16 = ΣT
U 235 + ΣT

U 238 + ΣT
O16

 
Probability that collison is with 

U235:    P =
ΣT
U 235

ΣT
fuel , U238:    P =

ΣT
U 238

ΣT
fuel , O16:    P =

ΣT
O16

ΣT
fuel ,

ΣA
fuel = NU 235σ A

U 235 + NU 238σ A
U 238 + NO16σ A

O16 = ΣA
U 235 + ΣA

U 238 + ΣA
O16  

ΣS
fuel = NU 235σ S

U 235 + NU 238σ S
U 238 + NO16σ S

O16 = ΣS
U 235 + ΣS

U 238 + ΣS
O16  

ΣT
fuel = ΣA

fuel + ΣS
fuel

Probability that neutron is

Absorbed:     PA =
ΣA

fuel

ΣT
fuel , Scattered:    PS =

ΣS
fuel

ΣT
fuel , PA + PS = 1
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Microscopic Cross-sections

• Microscopic Cross-section, σ

– σ =  Target area of single nuclide for an interaction

– Units: barns 1 barn = 10-24 cm2

– Examples: σA
U235, σS

H, σN-2N
U238

– Microscopic cross-section data:
• Measured in experiments
• Determined from theory (eg, quantum mechanics)
• Experiment + theory + judgement used by CSWEG to produce ENDF/B 

datasets

• Absorption vs Capture
– For NE’s and this class: σA

=   σC  + σF
σT

=   σC   + σF +  σS
=   σA  + σS

– Absorption = fission + capture
– Physicists often interchange “capture” & “absorption”

Type of reaction

Isotope
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U235 Fission Cross-section, σF
U235

1

.1

10

102

103

104

105

1 eV 2.25 KeV 25 KeV

Thermal Resolved
Resonances

Unresolved
Resonances

ba
rn

s

ENDF/B Data, Plotted by MCNP5

Experimental Data used by CSWEG
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Nuclear Data - Where to Find It

• Use the MCNP built-in cross-section plotter
– Generally, MCNP uses latest ENDF/B-VII.0 nuclear data
– Can plot any isotope & reaction (if available) in a problem
– Will be covered in Practical Lecture on Nuclear Data

• LANL T-2 Nuclear Information Service
– t2.lanl.gov
– Nuclear Data Viewer & ENDF data

• National Nuclear Data Center,  Brookhaven National Lab.
– nndc.bnl.gov - has ENDF data & plotting utilities
– Isotopic abundances - AMDC
– Chart of the Nuclides
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Microscopic Cross-sections

• Thought experiments:
– Given that a collision occurs with nuclide J, 

what is the probability of the incoming particle surviving the collision?

• Note that     σT
J =   σA

J + σS
J Absorption ⇒ particle disappears

Scatter       ⇒ particle survives
• Probability of surviving

the collision      =     σS
J / σT

J

– Given that a collision occurs with nuclide J, 
what is the probability of fission?

• Note that     σT
J = σF

J +  σC
J + σS

J

• Probability of fission  =   σF
J / σT

J

⇒ In MC codes, “given that a collision occurs with nuclide J”,   
probabilities based on ratios of partial σ’s for nuclide J 
are used in sampling what reaction takes place with that nuclide



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       23

Beam Attenuation

• For a beam of particles
– Ψ(r, E, Ω) = angular flux at r, direction Ω

• Directional quantity
• Integrate over all Ω to get scalar flux Φ

– If a beam of particles is directed at a 
purely-absorbing infinite slab,
what is the beam strength at penetration x?

– Probability of traveling distance x without collision is

– Probability of colliding at distance x is

[prob of colliding at x per-unit-dist] * [prob of reaching x w/o collision]

⇒ MC codes use this relation to sample the distance to the next collision

X=0

Ψ0

ψ (x) =ψ 0 ⋅ e
−ΣT x

e−ΣT x

f (x) = ΣT ⋅e
−ΣT x
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Reaction Rates

• Most of the time, nuclear engineers don’t care about flux.
The important & useful quantities desired include:

absorption in a region,   fission in a region,   heating in a region,
absorption in  U235 U238 Pu239  B10 Hf Xe135  Zr …..,   etc.

• Reaction rates
– Collision rate =       ΣT Φ
– Fission rate =       ΣF Φ
– Neutron production rate =     νΣF Φ
– Absorption rate in U235 =  ΣAU235  Φ

– Reaction rate = [reactions / cm] * [total cm traveled / cm3sec] 
= reactions / cm3sec

– To get total reactions/sec for a region, integrate over the region volume

– For reaction rates in a material, use Σ for the material
– For reaction rates for a nuclide, use Σ for the nuclide  (in the material)
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Another Flux Estimator

• Thought experiment:
– Suppose we could watch all particles as they fly around & have collisions

• Keep track of all the collisions within a region G, 
for all the particles, for a second

• [collision rate] =  ΣTΦ

• Solve for flux: Φ = [collision rate] / ΣT 

⇒ MC uses this to estimate the flux in a region.
This is the basis for a “collision estimator”

– We have seen that MC can estimate the flux in a region in several ways:
• Pathlength estimator - [total distance traveled in region]  /  (Volume x time)
• Collision estimator     - [total collisions in region] / ΣT            /  (Volume x time)

• Which is correct? Both
• Which is better? Depends on physics & geometry of problem
• Are there other flux estimators? Yes (flux at point, flux on surface, …..)
• Which one should be used? If available, all  (statistically combined)
• MCNP only provides pathlength flux estimators for a region. 

Some MC codes only provide collision estimators; some provide both.

G
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Monte Carlo - Introduction

• Goal: Simulate nature,   
particles moving through physical objects

Flight

Random sampling using
ΣT & exponential PDF:
• Free-flight distance

to next collision, s

Ray-tracing in 3D
computational geometry

Collision

Simulate absorption:
• absorb,   or
• reduce weight

Random sampling 
using nuclear data:
• Collision isotope
• Reaction type
• Exit  E'  &  Ω'
• Secondary particles

During analysis of both flights & collisions,
tally information about distances, collisions, etc.
to use later in statistical analysis for results
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Monte Carlo Simulation - Assumptions
Assume:

– Neutrons & photons are particles, not waves
– Particles move in a straight line between collisions   (neutrons, photons)
– Collisions occur instantaneously, at a point in space

– Particle speeds are  small enough to neglect relativistic effects
– Particle speeds are  high  enough to neglect quantum    effects

– Particle collisions do not change the properties of a material
(ie,  no feedback,  no material heating,  no depletion)

– Material properties are fixed for the duration of the simulation
(geometry,  densities,  temperatures,  material compositions, …..) 

Why?
– Want to solve the linear Boltzmann transport equation
– Want to apply the superposition principle
– Want the Central Limit Theorem to apply for computing statistics

• Statisticians love the term “IID” - Independent, Identically Distributed

(Any or all of the above assumptions can be relaxed, with careful analysis & extra computing cost.)
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Linear Boltzmann Transport Equation

• Time-dependent linear Boltzmann transport equation for neutrons,  
with prompt fission source & external source

• This equation can be solved directly by Monte Carlo, assuming:
– Each neutron history is an IID trial  (independent, identically 

distributed)
– All neutrons must see same probability densities in all of phase space
– Usual method:   geometry & materials fixed over solution interval Δt

 

1
v
∂ψ(

r,E,

Ω,t)

∂t
= Q(


r,E,

Ω,t) + ψ(


r, ′E , ′


Ω ,t)ΣS(


r, ′E →E,


Ω⋅

′Ω )∫∫ d

′Ω d ′E

+ χ(

r,E)
4π

νΣF(

r, ′E )ψ(∫∫


r, ′E , ′


Ω ,t)d


′Ω d ′E

−

Ω⋅∇ + ΣT(


r,E)⎡⎣ ⎤⎦ ⋅ ψ(


r,E,

Ω,t)

1
v
∂ψ(

r,E,

Ω,t)

∂t
= Q + [S +M] ⋅ ψ    −     [L + T] ⋅ ψ

External source Scattering

Multiplication

Leakage Collisions

Gains Losses
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• Monte Carlo codes solve the transport equation

• For comparison, the multigroup diffusion equation is an 
approximation used by many codes & taught to undergrads:

• Many approximations - angle, energy, D, …..

Time-dependent Diffusion 

 

1
v
∂ΦG(


r,t)

∂t
= QG(


r,t)   + ΣS, ′G→G(


r ) ⋅Φ ′G (


r,t)

′G ≠G
∑    + χG(


r )

4π
νΣF, ′G (


r ) ⋅Φ ′G (


r,t)

′G
∑

−  ΣA,G(

r )  −   ∇ ⋅DG∇⎡⎣ ⎤⎦ ⋅ ΦG(


r,t)

1
v
∂Φ(

r,t)

∂t
=  QG + [S +M] ⋅Φ    −     [L + T] ⋅Φ

External source Scattering Multiplication

LeakageAbsorption

Gains Losses
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Monte Carlo & Transport Equation

• Derive integral equation, in kernel form
– Start with integro-differential equation
– Use integrating factor

– Define

Collision density:

Transport kernel:

Collision kernel:

– Then

 
exp − ΣT (!r − RΩ̂,E)d ′R

0

R

∫
⎡

⎣
⎢

⎤

⎦
⎥, where  RΩ̂ = !r − !′r

 
T ( ′!r → !r ,

!
E) = ΣT (

!r ,E) ⋅exp − ΣT (
!′r + sΩ̂,E)ds

0

!r−!′r

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅
δ Ω̂i

!r−!′r!r−!′r −1( )
!r−!′r 2

 
!
E = E ⋅ Ω̂

 Ψ(
!r ,
!
E) = ΣT (

!r ,E) ⋅ψ (!r ,
!
E)

 
C(
!
′E →
!
E, !r ) = ΣS (

!r ,
!
′E →
!
E)

ΣT (
!r , ′E )

+ χ(!r ,E)νΣF (
!r , ′E )

4π ⋅ΣT (
!r , ′E )

 
Ψ(!r ,

!
E) = Ψ(!′r ,

!
′E ) ⋅C(

!
′E →
!
E, !′r )d

!
′E + Q( ′!r ,

!
′E )∫⎡⎣ ⎤
⎦∫ ⋅T (!′r → !r ,

!
E)d!′r

Reference: D.C. Irving, "The Adjoint Boltzmann Equation and Its Simulation by Monte Carlo"
Nuclear Engineering & Design 15, 273-292 (1971)
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Monte Carlo & Transport Equation

Basis for the Monte Carlo Solution Method

 

Let    p = (!r,
!
E)        and         R( ′p → p) = C(

!
′E →
!
E,!′r ) ⋅T(!′r →

!r,
!
E)

Expand  Ψ  into components having  0,1,2,...,k  collisions

Ψ(p) = Ψk(p)
k=0

∞

∑ , with    Ψ0(p) = Q(!′r ,
!
E) ⋅T(!′r →

!r,
!
E)d!′r∫

By definition,
Ψk(p) = Ψk−1( ′p )∫ ⋅R( ′p → p)d ′p

Markovian:  collision  k  depends only on the results of collision  k-1,
and not on any prior collisions  k-2, k-3, ...

 
Ψ(!r ,

!
E) = Ψ(!′r ,

!
′E ) ⋅C(

!
′E →
!
E, !′r )d

!
′E + Q( ′!r ,

!
′E )∫⎡⎣ ⎤
⎦∫ ⋅T (!′r → !r ,

!
E)d!′r
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Histories
• After repeated substitution for  Ψk

• A "history" is a sequence of states   (p0, p1, p2, p3, …..)

• For estimates in a given region, tally the occurrences for
each collision of each "history" within a region

Monte Carlo & Transport Equation

Ψk(p) = Ψk−1( ′p )∫ ⋅R( ′p → p)d ′p

= ... Ψ0(p0 )∫ ⋅R(p0 → p1)∫ ⋅R(p1 → p2 )...R(pk−1 → p)dp0...dpk−1

p0

p1

p2
p3

p4p1

p0

p2p3

History 1
History 2
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Monte Carlo approach:

• Generate a sequence of states (p0, p1, p2, p3, …..)    [i.e., a history]  
by:
– Randomly sample from PDF for source: Ψ0(p0)
– Randomly sample from PDF for kth transition: R(pk-1→pk)

• Generate estimates of results by averaging over states for M 
histories:

Monte Carlo & Transport Equation

Ψk(p) = ... Ψ0(p0 )∫ ⋅R(p0 → p1)∫ ⋅R(p1 → p2 )...R(pk−1 → p)dp0...dpk−1

A = A(p) ⋅Ψ(p)dp∫ ≈ 1
M

⋅ A(pk,m)
k=1

∞

∑⎛⎝⎜
⎞
⎠⎟m=1

M

∑
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Fixed-source Monte Carlo Calculation

Source
- select r,E, Ω

Random
Walk Random

Walk

Random
WalkRandom

Walk
Random

Walk

Random
Walk

Source
- select r,E, Ω

Random
Walk Random

Walk

Random
Walk

Random
Walk

Random
Walk

Source
- select r,E, Ω

Random
Walk Random

Walk

Random
Walk

Random
Walk

Random
Walk

Random
Walk

History 1

History 2

History 3

Random Walk for a particle

Particle Histories

Track through geometry,
- select collision site randomly
- tallies

Collision physics analysis,
- Select new E,Ω randomly
- tallies

Secondary
Particles
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Keff Eigenvalue Equation 

• For problems with fission multiplication, another approach is to create a 
static eigenvalue problem from the time-dependent transport equation   
(the asymptotic or steady-state solution) 

• Introduce Keff, a scaling factor on the multiplication (ν)

• Assume:
1. Fixed geometry & materials
2. No external source: Q(r,E,Ω,t) = 0
3. ∂Ψ/∂t = 0: ν ⇒ ν / keff

• Setting  ∂Ψ/∂t  = 0   and   introducing the  Keff eigenvalue gives

– Steady-state equation,  a static eigenvalue problem for Keff and Ψk
– Keff = effective multiplication factor
– Critical:   K=1,       subcritical:   k<1,       supercritical:    k >1
– Keff and  Ψk should never be used to model time-dependent problems.

 
L + T[ ]Ψk(


r,E,

Ω) = S + 1

Keff

M
⎡

⎣
⎢

⎤

⎦
⎥Ψk
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Keff Eigenvalue Equation

[ L + T ] 𝚿k =   [S  +  1/k M ] 𝚿k

• The factor  1/k  changes the relative level of the fission source, to 
balance the equation & permit a steady-state solution

• Criticality
Supercritical: Keff > 1

Critical: Keff = 1

Subcritical: Keff < 1

 


Ω⋅∇ + ΣT(


r,E)⎡⎣ ⎤⎦ ⋅ ψ(


r,E,

Ω) = ψ(


r, ′E , ′


Ω )ΣS(


r, ′E →E,


Ω⋅

′Ω )∫∫ d

′Ω d ′E

+ 1
keff

χ(

r,E)
4π

νΣF(

r, ′E ,t)ψ(∫∫


r, ′E , ′


Ω )d


′Ω d ′E

Scattering

Multiplication

Leakage Collisions
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Monte Carlo Eigenvalue calculation
Initial
Guess

Cycle 1
Keff

(1)
Cycle 2

Keff
(2)

Cycle 3
Keff

(3)
Cycle 4

Keff
(4)

Cycle 1
Source

Cycle 3
Source

Cycle 4
Source

Cycle 5
Source

Cycle 2
Source

Source
- select r,E, Ω

Random
Walk Random

Walk

Random
WalkRandom

Walk

Random
Walk

Random
Walk

Source
- select r,E, Ω

Random
Walk Random

Walk

Random
Walk

Random
Walk

Random
Walk

Source
- select r,E, Ω

Random
Walk Random

Walk

Random
Walk

Random
Walk

Random
Walk

Random
Walk

Iterate (cycle) until converged, then more to accumulate tallies
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Keff Eigenvalue Equation

• A common misinterpretation:        Keff >1 means “power is rising”
– Not true !

– The factor 1/Keff in the transport equation is the eigenvalue required to 
make the equation balance for a steady-state solution (stationary 
eigenfunction)

– Reactor designers & analysts instead think of reactivity:

– Think of reactivity as a “potential” for power to rise or fall
• If it is not cancelled out by some control, then power would rise.  
• In practice, positive reactivity is cancelled out by negative reactivity 

from control rods, soluble boron, fission product poisoning, 
temperature changes, etc.

– The job of reactor designers is: 
• Calculate the reactivity for a specific reactor configuration. 
• If the reactivity is positive, some changes need to be made to 

introduce negative reactivity.  Conversely for negative reactivity.

ρ =
keff −1
keff
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Statistics Review

• Probability Density Function & Random Sampling

• Continuous PDF & CDF

• Discrete PDF & CDF

• Mean, Standard Deviation, Standard Deviation of the Mean
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Probability ?

What are the odds of …..

• Being audited by the IRS this year 100 to   1

• Losing your luggage on a U.S. flight 176 to   1

• Being dealt 4 aces on an opening poker hand 4,164 to   1

• Being struck by lightning in your lifetime 9,100 to   1

• Being hit by a baseball at a major league game 300,000 to   1

• Drowning in your bathtub this year 685,000 to   1

• Winning the Powerball jackpot with 1 ticket 292,201,338 to   1

Yet we all still keep buying Powerball tickets, but don’t worry too much about lightning…

Introduction
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Simple Random Sampling (1)

• Suppose we have 3 items, A, B, and C
– PA = probability of randomly picking item A = 25% = 0.25
– PB = probability of randomly picking item B = 50% = 0.50
– PC = probability of randomly picking item C = 25% = 0.25

– PA + PB + PC = 1.0

• Random sampling - pick A or B or C

Generate a random number R
in the range (0,1)

If    R  <  .25 Ü select  A
Else If.25 < R  <  .75 Ü select  B
Otherwise Ü select  C

PA = .25

PB = .50

0

.25

1.0
PC = .25

.75

Cumulative
Probabilities
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Simple Random Sampling (2)

• Random sampling - pick A or B or C
– PA = probability of randomly picking item A = 25% = 0.25
– PB = probability of randomly picking item B = 50% = 0.50
– PC = probability of randomly picking item C = 25% = 0.25
– PA + PB + PC = 1.0

0

.25

A B C

.50

Cumulative
Probabilities

A B C
0

.25

.50

.75
1.0

Discrete
Probabilities

Generate a 
random number R
in the range (0,1),

Pick A, B, or C
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Probability Density Functions

• Continuous Probability Density

• Discrete Probability Density

f(x) = probability density function (PDF)
f(x) ≥ 0

Probability{a ≤ x ≤ b} = f(x)dx
a

b

∫

Normalization: f(x)dx = 1
-∞

∞

∫

{ fk }, k = 1,...,N, where fk = f(xk )
fk ≥ 0
Probability{ x = x k } = fk

Normalization: fk = 1
k=1

N

∑
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Random Sampling

The key to Monte Carlo methods is the notion of random sampling.

• The problem can be stated this way:
Given a probability density, f(x), produce a sequence of     's.
The    's should be distributed in the same manner as f(x).

• Use of random sampling distinguishes Monte Carlo from other methods

• When Monte Carlo is used to solve the Boltzmann transport equation:
– Random sampling models the outcome of physical events

(e.g., neutron collisions, fission process, sources, …..)
– Computational geometry models the arrangement of materials

x̂
x̂
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Continuous PDF & CDF

• Probability Density Function (PDF)

• Cumulative Distribution Function (CDF)

F(x) = f( ′x )d ′x
-∞

x

∫
0 ≤ F(x) ≤ 1
dF(x)
dx

≥ 0

F(−∞) = 0, F(∞) = 1

f(x) = probability density function (PDF)
f(x) ≥ 0

Probability{a ≤ x ≤ b} = f(x)dx
a

b

∫

Normalization: f(x)dx = 1
-∞

∞

∫
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Direct Sampling

• Direct solution of

• Sampling procedure
– Generate ξ
– Determine       such that F(    ) = ξ

• Advantages
– Straightforward mathematics & coding
– "High-level" approach

• Disadvantages
– Often involves complicated functions
– In some cases, F(x) cannot be inverted (e.g., Klein-Nishina)

x̂ = F−1(ξ)

Solve for  x̂: ξ= f(x)dx
-∞

x̂

∫

x̂ x̂
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Rejection Sampling

• Von Neumann:
" ........ it seems objectionable to compute a
transcendental function of a random number. "

• Select a bounding function, g(x), such that
•   c ⋅ g(x)  > f(x)    for all x
•   g(x) is an easy-to-sample PDF

• Sampling Procedure:
• sample x' from g(x): x'   ← G-1(ξ1)

• test: ξ2 ⋅ c g(x') < f (x')

if true, accept x',   done
if false, reject   x',   try again

• Advantages
– Simple computer operations

• Disadvantages
– “Low-level” approach, sometimes hard to understand
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Mean & Standard Deviation

• Given a set of random samples,   x1, x2, …, xN,

– Mean 

– Population variance & standard deviation

– Variance & standard deviation of the mean

  

� 

x = 1
N

xj
j= 1

N

∑

σ 2 =
1
N

xj
2

j=1

N

∑ −
1
N

xj
j=1

N

∑
⎛

⎝⎜
⎞

⎠⎟

2

=
1
N

xj
2

j=1

N

∑ − x 2 σ      =    1
N

xj
2

j=1

N

∑ − x 2

σ x
2 =

σ 2

N
σ X =

1
N

⋅
1
N

xj
2

j=1

N

∑ − x 2

Monte Carlo codes calculate mean values for tallies,
& report the standard deviation of the mean
In the definitions above, some of the “N” terms should really be “N-1”.
MCNP & many other codes ignore that, since N is very large.
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Random Numbers
&

Random Sampling
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Introduction

The key to Monte Carlo methods is the notion of random sampling.

• The problem can be stated this way:
Given a probability density, f(x), produce a sequence of     's.
The    's should be distributed in the same manner as f(x).

• Random sampling distinguishes Monte Carlo from other methods
• When Monte Carlo is used to solve the Boltzmann transport equation:

– Random sampling models the outcome of physical events
(e.g., neutron collisions, fission process, sources, …..)

– Computational geometry models the arrangement of materials

x̂
x̂
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Monte Carlo & Random Sampling

Categories of random sampling

• Random number generator - uniform PDF on (0,1)
• Sampling from analytic PDFs - normal, exponential, Maxwellian, …
• Sampling from tabulated PDFs - angular PDFs, spectrum, …

For Monte Carlo codes…

• Random numbers, ξ, are produced by the RN generator on (0,1)
• Non-uniform random variates are produced from the ξ’s by:

– Direct inversion
– Rejection methods
– Transformations
– Composition (mixtures)
– Sums, products, ratios, …
– Table lookup + interpolation
– Lots (!) of other tricks

• Typically  <  5 - 10% of total CPU time
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Random Number Generators

"Randomness is a negative property; it is the absence of any pattern."
Richard W. Hamming, 1991

• Numbers are not random;  a sequence of numbers can be.

• Truly random sequences are generally not desired on a computer.

• RNG
– Function which generates a sequence of numbers which appear to 

have been randomly sampled from a uniform distribution on (0,1)

– Repeatable  (deterministic)
– Pass statistical tests for randomness

– Typical usage in codes: r  =  rang()
– Also called "pseudo-random number generators"

• All other random sampling is performed using this basic RNG

• Note that the probability of something occurring also 
varies between 0 & 1 …..
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Random Number Generators

Most production-level Monte Carlo codes for particle transport use 
linear congruential random number generators:

Si+1 =  Si • g  +  c    mod 2m

Si = seed,   g = multiplier,  c = adder,  2m = modulus

• Simple, fast, robust, over 50 years of heavy-duty use

• Theory is well-understood (e.g., DE Knuth, Vol. 2, 177 pages)

• Not the "best" generators, but good enough - RN's are used in 
unpredictable ways during particle simulation

• To achieve reproducibility for vector or parallel calculation, there 
must be a fast, direct method for skipping ahead (or back) in the 
random sequence
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Simple RNG - Example #1

Sk+1 = [ g·Sk + C ] mod p,    with g=47, C=1, S0=1, P=100

s( 0) = 1
s( 1) = (47x1  + 1) mod 100 =   48 mod 100 = 48
s( 2) = (47x48 + 1) mod 100 = 2257 mod 100 = 57
s( 3) = (47x57 + 1) mod 100 = 2680 mod 100 = 80
s( 4) = (47x80 + 1) mod 100 = 3761 mod 100 = 61
s( 5) = (47x61 + 1) mod 100 = 2868 mod 100 = 68
s( 6) = (47x68 + 1) mod 100 = 3197 mod 100 = 97
s( 7) = (47x97 + 1) mod 100 = 4560 mod 100 = 60
s( 8) = (47x60 + 1) mod 100 = 2821 mod 100 = 21
s( 9) = (47x21 + 1) mod 100 =  988 mod 100 = 88
s(10) = (47x88 + 1) mod 100 = 4137 mod 100 = 37
s(ll) = (47x37 + 1) mod 100 = 1740 mod 100 = 40
s(12) = (47x40 + 1) mod 100 = 1881 mod 100 = 81
s(13) = (47x81 + 1) mod 100 = 3808 mod 100 =  8
s(14) = (47x8  + 1) mod 100 =  377 mod 100 = 77
s(15) = (47x77 + 1) mod 100 = 3620 mod 100 = 20
s(16) = (47x20 + 1) mod 100 =  941 mod 100 = 41
s(17) = (47x41 + 1) mod 100 = 1928 mod 100 = 28
s(18) = (47x28 + 1) mod 100 = 1317 mod 100 = 17
s(19) = (47x17 + 1) mod 100 =  800 mod 100 =  0
s(20) = (47x0  + 1) mod 100 =    1 mod 100 =  1
s(21) = (47x1  + 1) mod 100 =   48 mod 100 = 48
s(22) = (47x48 + 1) mod 100 = 2257 mod 100 = 57
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Simple RNG - Examples  #2  &  #3

Example #2: Sk+1 = [ g·Sk + C ] mod p, 
with g=5, c=1, S0=1, p=100

s( 0) = 1
s( 1) = (5x1  + 1) mod 100 =   6 mod 100 =  6
s( 2) = (5x6  + 1) mod 100 =  31 mod 100 = 31
s( 3) = (5x31 + 1) mod 100 = 156 mod 100 = 56
s( 4) = (5x56 + 1) mod 100 = 281 mod 100 = 81
s( 5) = (5x81 + 1) mod 100 = 406 mod 100 =  6
s( 6) = (5x6  + 1) mod 100 =  31 mod 100 = 31
etc.

Example #3: Sk+1 = [ g·Sk + C ] mod p, 
with g=5, c=0, S0=1, p=100

s( 0) = 1
s( 1) = (5x1 ) mod 100 =   5 mod 100 =  5
s( 2) = (5x5 ) mod 100 =  25 mod 100 = 25
s( 3} = (5x25) mod 100 = 125 mod 100 = 25
s( 4) = (5x25) mod 100 = 125 mod 100 = 25
etc.
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Typical Linear Congruential RNGs

• Multiplicative congruential method - Lehmer

Sk =  g∙Sk-1 + c   mod 2m, 0  <  Sk <  2m, integer

ξk = Sk / 2m, 0  ≤ ξk <  1, real

• Typical parameters
2m Period g c

RACER (KAPL) 247 245 84,000,335,758,957 0
RCP (BAPL) 248 248 29+1 59,482,192,516,946
MORSE (ORNL) 247 245 515 0
VIM (ANL) 248 246 519 0
RANF (CRAY) 248 246 44,485,709,377,909 0
G. Marsaglia 232 232 69069 1
MCNP6 (default) 248 246 519 0
MCNP6 (opt) 263 263 (6 options) 1  or  0



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       57

MCNP5  &  MCNP6   RNG

• MCNP5  &  MCNP6   Linear congruential generator (LCG)

Sn+1 = g Sn + c  mod 2m

– See Knuth for rules for selecting g,c,m so that period is maximized & correlation 
minimized

– 7 different LCGs are available -- chosen based on the spectral test, Knuth's 
tests, & Marsaglia's DIEHARD tests

– LCG( g, c, 2m ):
• Traditional MCNP, period = 246 ≈ 7x1014

– LCG( 519, 0, 248 )
• L'Ecuyer 63-bit Mixed LCGs,  period = 263 ≈ 9x1018

– LCG( 9219741426499971445, 1, 263 )
– LCG( 2806196910506780709, 1, 263 )
– LCG( 3249286849523012805, 1, 263 )

• L'Ecuyer 63-bit Multiplicative LCGs,  period = 261 ≈ 2x1018

– LCG( 3512401965023503517, 0, 263 ) 
– LCG( 2444805353187672469, 0, 263 ) 
– LCG( 1987591058829310733, 0, 263 )

[L’Ecuyer, Math. Comp., 68, 249-260 (1999)]
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Using RNGs in Particle Transport MC Codes

• Naïve use, in many older codes & student codes

– Problem: Can't start Particle-2 until Particle-1 is finished, etc.
Can't do parallel processing of different particles

• MCNP, VIM, RACER, MC21, & many other production codes
– Partition RN sequence into equal-length subsequences, one for each 

particle

– Can process all particles in parallel
– Length of each subsequence is called the stride
– Must have a fast way to skip-ahead in the RN sequence

•••••••••••••••••••••••••••••••••••••••••
RNs for

particle 1
RNs for

particle 2
RNs for

particle 3

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
RNs for

particle 1
RNs for

particle 2
RNs for

particle 3
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Using RNGs in Particle Transport MC Codes

• Histories vs particles
– With splitting &/or secondary particle creation, 

the number of particles in a given history is 
not known in advance

– Need to partition RN sequence by history, 
not by particle

– With this scheme, can process histories in parallel, 
but not particles in same history

– Must have a predictable scheme for banking/unbanking particles in a 
given history (e.g., LIFO)
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Random Sampling

"Anyone who considers arithmetical methods of producing 
random digits is, of course, in a state of sin."

John Von Neuman, 1951
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Probability ?

What are the odds of …..

• Being audited by the IRS this year 100 to   1

• Losing your luggage on a U.S. flight 176 to   1

• Being dealt 4 aces on an opening poker hand 4,164 to   1

• Being struck by lightning in your lifetime 9,100 to   1

• Being hit by a baseball at a major league game 300,000 to   1

• Drowning in your bathtub this year 685,000 to   1

• Winning the Powerball jackpot with 1 ticket 292,201,338 to   1

Yet we all still keep buying Powerball tickets, but don’t worry too much about 
lightning…

Introduction
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Simple Random Sampling (1)

• Suppose we have 2 items, A and B
– PA = probability of randomly picking item A = 25% = 0.25
– PB = probability of randomly picking item B = 75% = 0.75

– PA + PB = 1.0

• Random sampling - pick A or B

Generate a random number R
in the range (0,1)

If    R  <  .25Ü select  A
Otherwise Ü select  B

PA = .25

PB = .75

0

.25

1.0

Cumulative
Probabilities
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Simple Random Sampling (2)

• Suppose we have 3 items, A, B, and C
– PA = probability of randomly picking item A = 25% = 0.25
– PB = probability of randomly picking item B = 50% = 0.50
– PC = probability of randomly picking item C = 25% = 0.25

– PA + PB + PC = 1.0

• Random sampling - pick A or B or C

Generate a random number R
in the range (0,1)

If    R  <  .25 - select  A
Else If .25 < R  <  .75 - select  B
Otherwise - select  C

PA = .25

PB = .50

0

.25

1.0
PC = .25

.75

Cumulative
Probabilities
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Simple Random Sampling (3)

• Random sampling - pick A or B or C
– PA = probability of randomly picking item A = 25% = 0.25
– PB = probability of randomly picking item B = 50% = 0.50
– PC = probability of randomly picking item C = 25% = 0.25
– PA + PB + PC = 1.0

0

.25

A B C

.50

Cumulative
Probabilities

A B C
0

.25

.50

.75
1.0

Discrete
Probabilities

Generate a 
random number R
in the range (0,1),

Pick A, B, or C
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Probability Density Functions

• Continuous Probability Density

• Discrete Probability Density

f(x) = probability density function (PDF)
f(x) ≥ 0

Probability{a ≤ x ≤ b} = f(x)dx
a

b

∫

Normalization: f(x)dx = 1
-∞

∞

∫

{ fk }, k = 1,...,N, where fk = f(xk )
fk ≥ 0
Probability{ x = x k } = fk

Normalization: fk = 1
k=1

N

∑
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Continuous PDF & CDF

• Probability Density Function (PDF)

• Cumulative Distribution Function (CDF)

F(x) = f( ′x )d ′x
-∞

x

∫
0 ≤ F(x) ≤ 1
dF(x)
dx

≥ 0

F(−∞) = 0, F(∞) = 1

f(x) = probability density function (PDF)
f(x) ≥ 0

Probability{a ≤ x ≤ b} = f(x)dx
a

b

∫

Normalization: f(x)dx = 1
-∞

∞

∫

Note:   convention is to use f(x) for PDF,  F(x) for CDF
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Discrete PDF & CDF

• Probability Density Function (PDF)

• Cumulative Distribution Function (CDF)

Note:   convention is to use fJ for PDF,  FJ for CDF
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Fundamental RNG

• Random Number Generator
– Not strictly "random", but good enough

• Pass statistical tests for randomness
• Reproducible sequence

– Uniform PDF on (0,1)
– Must be easy to compute

• Linear Congruential Method
– Algorithm

S0 =  initial seed,  odd integer, < M
Sk = G∙Sk-1 + c   mod M,    k = 1,2, …..
ξk = Sk / M

• Usage
– In algorithms,  usually denote RN uniform on (0,1) by ξ ( "xye" )
– In codes, invoke basic RN generator by: r  =  rang()
– Each new usage of  ξ or  rang()  generates a new RN
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Random Sampling

The key to Monte Carlo methods is the notion of random sampling.

• The problem can be stated this way:
Given a probability density, f(x), produce a sequence of     's.
The    's should be distributed in the same manner as f(x).

• The use of random sampling distinguishes Monte Carlo from other methods

• When Monte Carlo is used to solve the integral Boltzmann transport 
equation:
– Random sampling models the outcome of physical events

(e.g., neutron collisions, fission process, sources, …..)
– Computational geometry models the arrangement of materials

x̂
x̂

Given f(x),
Randomly choose x
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★★★★★ Direct Sampling ★★★★★

• Direct solution of x = F-1(ξ )

• Sampling procedure
– Generate ξ
– Determine  x  such that  F( x ) = ξ

• Advantages
– Straightforward mathematics & coding
– "High-level" approach

• Disadvantages
– Often involves complicated functions
– In some cases, F(x) cannot be inverted (e.g., Klein-Nishina)

Solve for  x: ξ= f(y)dy
-∞

x

∫
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Discrete PDFs

• Sampling from Discrete PDF's - Conventional Procedure

Direct Solution of x' ← F-1(ξ)

(1)  Generate ξ
(2)  Determine k such that   Fk-1 ≤  ξ < Fk

(3)  Return   x' = xk

• Step (2) requires a table search
– Linear table searches require O(N) time - use when N small
– Binary table searches require O(lnN) time - use when N large

• For some discrete PDFs, Fk’s are not precomputed.
– Use linear search, with Fk's computed on-the-fly as needed
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Discrete Uniform PDF

• Example - Sampling from Discrete Uniform PDF

• Discrete Uniform PDF
– fk = 1 / N,    k = 1, …, N
– Fk = k / N,   F0=0,   FN= 1

• Sampling procedure:
– Could use table search method, ....
– Easier, for this special case:

k ← 1 +  ⎣N ξ ⎦,

where  ⎣ y ⎦ is the "floor" function,
largest integer < y

– Fortran: k = 1 +   int( N*rang() )
C: k = 1 + floor( N*rang() )

– Note: must be sure that 1 ≤  k ≤  N
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Discrete PDFs - Examples

• Example – Pick 1 Powerball number, uniform integer in [1,60]

k = int( 1 + 60*rang() )

• Example - loaded die, faces show  2,2,3,4,5,5 – simulate 1 roll

pdf(1:6) =  [ 0./6., 2./6., 1./6., 1./6., 2./6., 0./6. ]
cdf(1:6) =  [ 0./6., 2./6., 3./6., 4./6., 6./6., 6./6. ]

r = rang()
do j = 1, 6

if(  r < cdf(j)  ) then
k = j
exit

endif
enddo
{result is k}

This coding is a simple linear search to 
determine an integer k in the range [1,6]
Search for the first occurrence of  ξ ≤ cdf(j)
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• Multigroup Scattering

– Scatter from group  g  to  group  g',   where   1 ≤  g' ≤  G

• Selection of scattering nuclide for a collision

– K = number of nuclides in composition

Random Sampling -- Discrete PDFs

f ′g =
σg→ ′g

σg→k
k=1

G

∑

f k =
N(k)σs

(k)

N(j)σs
( j)

j=1

K

∑
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★★★★★ Direct Sampling ★★★★★

• Direct solution of x = F-1(ξ )

• Sampling procedure
– Generate ξ
– Determine  x  such that  F( x ) = ξ

• Advantages
– Straightforward mathematics & coding
– "High-level" approach

• Disadvantages
– Often involves complicated functions
– In some cases, F(x) cannot be inverted (e.g., Klein-Nishina)

Solve for  x: ξ= f(y)dy
-∞

x

∫
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Continuous PDFs - Exponential

Examples - Sampling from an Exponential PDF

PDF:

CDF:

Direct sampling:
Solve for x:      F(x) = ξ

Although  (1- ξ) ≠ ξ,     
both  ξ and  (1- ξ)  are uniformly distributed on (0,1),
so that we can use either in the random sampling procedure.

i.e., the numbers are different, but the distributions are the same

Solving    ξ = 1− e−Σx        gives:    x ← − ln(1− ξ) / Σ
or

x ← − lnξ / Σ

f(x) = Σ ⋅e−Σx, x > 0

F(x) = f(y)dy
0

x

∫ = Σ ⋅e−Σy dy
0

x

∫ = −e−Σy
0

x
= 1− e−Σx
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Continuous PDFs – Power Law on [0,1]

Example - Sampling from power law PDF in range [0,1],

PDF: f(x) = (n+1) xn, n>0, 0 ≤ x ≤ 1
= 0           x < 0,  or   x > 1

CDF:

Sampling scheme: F(x)  =  ξ,      solve for x

xn+1 =  ξ
x  ←  ξ 1/(n+1)

For power laws on  [0,1]:
n=1: f(x) = 2x, F(x) = x2, x ← √ξ
n=2: f(x) = 3x2, F(x) = x3, x ← ∛ξ
n=3: f(x) = 4x3, F(x) = x4, x ← ∜ξ

F(x) = f (y)dy = (n +1) ⋅ yn dy
0

x

∫
0

x

∫ = (n +1) ⋅ y
n+1

n +1 0

x

= xn+1, 0 ≤ x ≤1

Note : (n +1)  is necessary, so that f ( ′x )d ′x = 1
0

∞

∫
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Continuous PDFs - Uniform

Example - Sampling from uniform PDF in range (a,b),
Histogram with 1 bin

PDF: f(x) = 1/(b-a),   a ≤ x ≤ b
= 0           x<a, or  x>b

CDF: F(x) = (x-a)/(b-a),   a ≤ x ≤ b

Sampling scheme: F(x)  =  ξ,      solve for x
(x-a)/(b-a) = ξ
x  ←  a   +   (b-a) ξ

Note:   Often implemented as:
f  =  ξ
x  ←  (1-f) a   +   f b

a b

1/(b-a)
f(x)

x à
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Continuous PDFs - Histogram

Example - Sampling from histogram with 2 bins

A1 =  (x1-x0)∙f1
A2 =  (x2-x1)∙f2

p1 =   Prob{  x0 < x < x1 }  =  A1 / (A1+A2)
p2 =   Prob{  x1 < x < x2 }  =  A2 / (A1+A2)
p1 +  p2 =  1

Two-step sampling procedure:
1. Select a bin, b:

If  ξ1 <  p1, select  b = bin 1
otherwise, select  b = bin 2

2. Sample x uniformly within bin:
x  ←  xb-1 +  ξ2∙(xb-xb-1)

x0 x1 x2

f(x)
Bin 1 Bin 2

f1

f2
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Continuous PDFs - Histogram

Example - Sampling from Histogram PDF

Two-step sampling: (1) Sample from discrete PDF to select a bin
(2) Sample from uniform PDF within bin

• Discrete PDF: pk = fk∙(xk-xk-1),       k = 1, …, N,       Σpk = 1
– Generate ξ1
– Use table search to select  k

• Uniform sampling within bin k
– Generate ξ2
– Then, x  ←   xk-1 +  (xk-xk-1)∙ξ2

x0 x1 x2

f(x) f1

f2

x5x4x3

f3
f4

f5
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Continuous PDFs – Linear    (1)

Example - Sampling from an increasing linear PDF in range [0,1]

PDF: f(x) = 2 x,        0 ≤ x ≤ 1

CDF: F(x) = x2,        0 ≤ x ≤ 1

Sampling scheme: F(x)  =  ξ,      solve for x
x2 = ξ
x  ←  sqrt( ξ )

While not obvious, 2 alternative schemes for sampling x are:
x  ←  max( ξ1, ξ2 )
x  ←  1 – abs( ξ1 – ξ2 )

0 1

f(x)

X à

2
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Continuous PDFs – Linear    (2)

Example - Sampling from a decreasing linear PDF in range [0,1]

PDF: f(x) = 2 - 2x,          0 ≤ x ≤ 1

CDF: F(x) = 2x - x2,        0 ≤ x ≤ 1

Sampling scheme: F(x)  =  ξ,      solve for x
2x-x2 = ξ
x2 - 2x + 1 = 1 – ξ
(x-1)2 = 1 - ξ
x – 1 =  ± sqrt(1-ξ)

Choose the minus sign for correct range in x:
x  ←  1 - sqrt( 1-ξ )

Or, since ξ and 1-ξ have the same distribution:
x  ←  1 - sqrt( ξ )

0 1

f(x)

X à

2
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Continuous PDFs – Linear    (3)

Increasing linear PDF

Random sampling can be done 
with a simple shifting & scaling
of the unit PDF:

x  ←  a +  (b-a) sqrt( ξ )

Decreasing linear PDF

Random sampling can be done 
with a simple shifting & scaling
of the unit PDF:

x  ←  a + (b-a) (1 - sqrt(ξ))

a b

f(x)

X à

2/(b-a)

a b

f(x)

X à

2/(b-a)



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       84

Continuous PDFs – Linear    (4)

Example - Sampling from linear PDF in range [a,b],    1 bin

PDF: f(x) = fa + m (x-a),     m = (fb-fa)/(b-a),  a ≤ x ≤ b

CDF: F(x) =   (m/2) x2 + (fa-ma) x  + (ma2/2 – faa)
=        A x2 +         B x   +       C

Sampling scheme: F(x) = ξ,     solve for x
x  =  { -B  ± sqrt( B2 – 4AC ) }  /  2A

è Awfully complicated,  and  sensitive to numerical roundoff
è There must be a simpler scheme         ( there is …)

a b

f(x)

X à

fa

fb
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Continuous PDFs – Linear    (5)

Example - Sampling from linear PDF in range [a,b],    1 bin

Composition method #1
Decompose the original PDF into the 
sum of 2 PDFs,  uniform + linear:

f(x) = pu u(x)  +  pl l(x)

u(x) = uniform on a ≤ x ≤ b,
pu = { min(fa,fb) (b-a) }  /  { .5(fa+fb) (b-a) }

l(x) = linear on a ≤ x ≤ b,
pl = { .5 abs(fb-fa) (b-a) }  /  { .5(fa+fb) (b-a) }

Sampling scheme: if(   ξ1 <  pu )
x  ←  a  +  (b-a) ξ2

else
if(  fb > fa ) x  ←  a  +  (b-a) sqrt( ξ2 )
else x  ←  a  +  (b-a) (1 - sqrt( ξ2 ))

a b

f(x)

X à

fa

fb

a b

u(x) 1/(b-a)

a b

l(x) 2/(b-a)
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Continuous PDFs – Linear    (6)

Example - Sampling from linear PDF in range [a,b],    1 bin

Composition method #2
Decompose the original PDF into the 
sum of 2 PDFs,  increasing + decreasing linear:

f(x) = pm m(x)  +  pl l(x)

m(x) = linear decreasing on a ≤ x ≤ b,
pm = { .5 fa (b-a) }  /  { .5(fa+fb) (b-a) }

=  fa / (fa+fb) 

l(x) = linear increasing on a ≤ x ≤ b,
pl = { .5 fb (b-a) }  /  { .5(fa+fb) (b-a) }

=  fb / (fa+fb) 

Sampling scheme: if(   ξ1 <  pl )
x  ←  a  +  (b-a) sqrt( ξ2 )

else
x  ←  a +  (b-a) (1 - sqrt( ξ2 ))

a b

m(x) 2/(b-a)

a b

l(x) 2/(b-a)

a b

f(x)

X à

fa

fb
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Continuous PDFs – Linear    (7)
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Continuous PDFs – Linear    (8)

We have seen that a simple, increasing linear PDF in the range 
[0,1] can be sampled directly by inverting the CDF to obtain:

PDF: f(x) = 2 x,       0 ≤ x ≤ 1
CDF: F(x) = x2,        0 ≤ x ≤ 1
Sampling scheme:

F(x) = ξ,     solve for x
x  ←  sqrt( ξ )

While not obvious, some other schemes for sampling x are:
x = ξ1
r = ξ2
if(  r > x  )   x = r

x  ←  max( ξ1, ξ2 )

x  ←  1 – abs( ξ1 – ξ2 )

0 1

f(x)

X à

2

Why consider these other schemes?

Sqrt() function used to be very expensive. The other 
schemes involve only simple non-arithmetic 
operations & were much faster.

Today, sqrt() operations & computers are very fast –
sqrt() is as fast as generating a 2nd RN. We usually go 
with the more obvious direct method.

BUT, the older schemes are still commonly used in 
production MC codes.  Learn to recognize them.
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Rejection Sampling

• Von Neumann:
" ........ it seems objectionable to compute a
transcendental function of a random number. "

• Select a bounding function, g(x), such that
•   c ≥  g(x)  > f(x)    for all x
•   g(x) is an easy-to-sample PDF

• Sampling Procedure:
• sample x' from g(x): x'   ←  G-1(ξ1)

• test: ξ2 ≤  c g(x') < f (x')

if true, accept x',   done
if false, reject   x',   try again

• Advantages
– Simple computer operations

• Disadvantages
– “Low-level” approach, sometimes hard to understand
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Rejection Sampling - Examples

• Sample from a PDF
f(x)  =  c ∙ erf( x ),    0 ≤ x ≤ 5.

note:   erf(∞) = 1.
Do

xtry = 5.*rang()
ftry = 1.*rang()
if( ftry <= erf(xtry) ) exit

Enddo
x = xtry

• Select (x,y) points uniformly in a disk
Do

x = 2.*rang() - 1.
y = 2.*rang() – 1.
if(  x**2 + y**2  <  1.0 )   exit

Enddo

X à
0 5

0

1

f(x) keep

reject

X à
Y 
à

-1

1

1
-1

keep

reject
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Direct vs. Rejection - 2D Direction Cosines
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Isotropic Scatter – Sampling the Scattering Angle

• Consider isotropic scattering
– Any direction is equally likely
– Interpret as:

"pick a random point on a unit 
sphere, 

then get direction-cosines"

• Rejection method for scatter 
angle sampling
– Pick  x,y,z randomly in unit cube
– If x,y,z outside unit sphere, 

reject and try again
– If x,y,z inside   unit sphere, 

scale so that  x2+y2+z2 = 1
– Get direction-cosines of angles,  u,v,w

• Direct method for scatter angle 
sampling

➜ μ  is distributed uniformly in [-1,1]
➜ φ is distributed uniformly in [0,2π]

μ   ←   2ξ1 - 1
φ ←   ξ2 2 π

φ

θμ= cos θ

f(Ω̂) = 1
4π

, dΩ̂
4π

= sinθ ⋅dθ
2

⋅ dφ
2π

f(θ,φ) = sinθ ⋅dθ
2

⋅ dφ
2π

, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π

f(θ) = f(θ,φ)dφ = sinθ
20

2π

∫
µ = cosθ, dµ = −sinθ ⋅dθ, −1≤ µ ≤ +1

f(µ) = f(θ) dθ
dµ

= sinθ
2

⋅ 1
sinθ

= 1
2
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Direct Sampling – Common PDFs
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Software Considerations
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Mean & Standard Deviation

• Given a set of random samples,   x1, x2, …, xN,

– Mean 

– Population variance & standard deviation

– Variance & standard deviation of the mean

  

� 

x = 1
N

xj
j= 1

N

∑

σ 2 =
1
N

xj
2

j=1

N

∑ −
1
N

xj
j=1

N

∑
⎛

⎝⎜
⎞

⎠⎟

2

=
1
N

xj
2

j=1

N

∑ − x 2 σ      =    1
N

xj
2

j=1

N

∑ − x 2

σ x
2 =

σ 2

N
σ X =

1
N

⋅
1
N

xj
2

j=1

N

∑ − x 2

Monte Carlo codes calculate mean values for tallies,
& report the standard deviation of the mean
In the definitions above, some of the “N” terms should really be “N-1”.
MCNP & many other codes ignore that, since N is very large.
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Random Sampling -- References

Every Monte Carlo code developer who works with random sampling should own & 
read these references:

– D. E. Knuth, The Art of Computer Programming, Vol. 2: Semi-numerical 
Algorithms, 3rd Edition, Addison-Wesley, Reading, MA (1998). 

– L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, NY 
(1986). ★

– J. von Neumann, "Various Techniques Used in Conjunction with Random 
Digits," J. Res. Nat. Bur. Stand. Appl. Math Series 3, 36-38 (1951). ★

– C. J. Everett and E. D. Cashwell, "A Third Monte Carlo Sampler," LA9721-MS, 
Los Alamos National Laboratory, Los Alamos, NM (1983). ★

– H. Kahn, "Applications of Monte Carlo," AECU-3259, Rand Corporation, Santa 
Monica, CA (1954). ★

★= Included in References on class CD
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Extra
Topics
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Direct vs. Rejection - Watt 
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Stratified Sampling
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Rejection Method

• Rejection sampling methods are useful when it is difficult or 
impossible to invert F(x), or when F(x) is no known

• Example - Selection of initial source sites in a reactor,
rejection method based on spatial coordinates

– Select a trial site:

– If  (x',y')  is inside a fuel pin 
(shaded region), then accept (x',y').

– Otherwise,   reject (x',y')  and  repeat

– Efficiency of rejection sampling 
~   (volume source region) / (total volume)

′x ← x1 + (x2 − x1) ⋅ ξ1
′y ← y1 + (y2 − y1) ⋅ ξ2
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Weighted Sampling
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Splitting & Russian Roulette
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Random Number Generators - Reproducibility
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Random Number Generators - Reproducibility
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Computational
Geometry
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Engineering Model vs. Computational Model

• Model Generation
– Focus on engineering productivity
– Describes “reality” to computer
– Interactive, batch, or CAD

• Large-scale Computation
– Focus on efficiency & capabilities
– Data structures should be compact & regular
– Computational model often hidden from user

• Post-Processing
– Interpretation of results
– Visualization

Model Generation Large-scale Computation Post-processing

Engineering Model Computational Model Engineering Model
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Modeling vs. Computation

• Element geometry

• Elements --> assemblies

• Assemblies --> core

• Core + peripherals 
--> 3D model

M
od

el
 c

on
st

ru
ct

io
n

G
eo

m
et

ry
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om
pu

ta
tio

n
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Monte Carlo Geometry

Development of particular geometric capabilities is driven by applications:
– Shielding & experiment analysis

• Irregular geometry
• Moderate number of regions & compositions

– Reactor core analysis
• Regular geometry
• Very many regions & compositions

Physics
• How far to collision?     
• Which nuclide?
• New E, direction?
• Secondaries?
• Survival?

Tallies
• Tally events of interest
• Compute results
• Compute statistics
• Balances
• Performance stats

Geometry
• Which cell is particle in?
• What will it hit next?
• How far to boundary?
• What’s on other side?
• Survival?

mcnp, rcp, vim, racer, sam, tart, morse, keno, tripoli, mcbend, monk, o5r, recap, andy, …
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Comments on 3D Computational Geometry   (1)

• At the most fundamental level, 3D computational geometry is an 
exercise in Set Theory, the same concepts we all learned as kids

Set of all x,y,z
points inside box A

Set of all x,y,z
points inside box B

Intersection of sets A  &  B

Union of sets A  &  B
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Comments on 3D Computational Geometry   (2)

• Some codes use primitive bodies (box, sphere, etc.) in defining 
the sets of points to consider

• Other codes use half-spaces – all the points on one side of a 
surface

• A little thought should convince you that either scheme can be 
used in set theory for defining objects in space

Set of all x,y,z
points on plus
side of surface

Set of all x,y,z
points inside box

Set of all x,y,z
points on minus
side of surface
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Computational Algorithm - Geometric View

Repeat for all keff cycles
. Repeat for all histories in cycle
. . Repeat while particles are left in history
. . . While particle wgt > 0
. . . . Repeat until collision
. . . . . Repeat for each universe level
. . . . . . Repeat for surfaces of 3D region
. . . . . . . Distance calculation
. . . . . . . . .
. . . . . . . .
. . . . . Boundary crossing
. . . . . Neighbor search
. . . . . Roulette/split
. . . . . . .
. . . . Collision analysis
. . . . Roulette/split
. . . . . .
. . . . .
. . Update tallies
. . . .
. Update tallies, source, & keff
. . .

1 reactor calculation requires
~1012 distance calculations
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Computational Geometry

• Every point in space that a particle could possibly reach must be 
defined in the geometry model – no gaps or overlaps of regions

• Cells (3D volumes) are defined by their bounding surfaces
– Boundary representation
– Combinatorial geometry, with either surfaces or primitive bodies
– CSG - constructive solid geometry, tree structure with boolean

operators
– Mesh geometry
– For some codes, disjoint volumes must have different cell numbers
– For MCNP & others, disjoint volumes may have the same  cell 

number

• Properties are assigned to each cell
– Material,  density,  temperature,  importance,  etc.

• Tallies are defined for particular  cells or surfaces, 
reaction types,  &  estimator types
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Basic Geometry Operations

• Locate
Given a point in space, determine what cell it is in

• Distance to surface
Given a point & direction in a particular cell, 

determine the distance to the next surface of that cell

• Neighbor search
For a particle which has hit a bounding surface of a cell,

determine the cell to be entered next

• Boundary conditions
For a particle which has hit a cell bounding surface

declared to be periodic or reflecting,
determine the new position & direction and cell to be entered next 
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Simple Case - Mesh Geometry

• Particle 
Position = (x,y,z),    Direction = (u,v,w)

• Cell number
(i,j,k),  indices in mesh

• Locate
i: binary search to find x-interval containing x
j: binary search to find y-interval containing y
k: binary search to find z-interval containing z

• Distance
– Use signs of (u,v,w) to select surfaces,

then compute 3 distances:

if  u>0,    dx = (xi+1-x)/u,     otherwise    dx = (xi-x)/u
… similar for dy & dz

– Distance: d = min( dx, dy, dz )
• Neighbor search
• Boundary conditions

xi xi+1

yJ+1

yJ

(x,y,z)
(u,v,w)

x1

y3

x2 x3 x4

y1

y4

y2
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MCNP Geometry

• MCNP uses a "combinatorial geometry" based on surfaces

– Define surfaces,   specify sense   (which side of surface)

– Define cells using surfaces & operators (intersection, union, 
complement)

– Can also group cells together into a universe, and embed that universe 
inside another cell

– Can also group cells together into a universe, repeat that universe in a 
lattice arrangement, and embed that universe inside another cell

– Assign materials to cells

– Assign other properties to cells    (e.g., density, temperature, 
importance)

– Define tallies using cell or surface numbers
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Surfaces

• In MCNP, surface types include:
1st order: planes
2nd order: spheres,   cylinders,   cones,   ellipsoid,   

hyperboloid,   paraboloid,  general quadric
4th order: elliptical & circular torus  (axes parallel to x, y, or z)

• Quadratic polynomial for surface:

F(x,y,z) = ax2 + by2 + cz2 + dxy + eyz + fzx + gx + hy + jz + k

– Surface is defined by: F(x,y,z) = 0
– Surface is either infinite or closed
– Normalization convention:     factor of leading 2nd order term is 

positive
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MCNP Surfaces
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MCNP Surfaces
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Sense

• For a given point in space, (x,y,z), and surface equation, 
F(x’,y’,z’)=0,  the sense of the point with respect to the surface is 
defined as:

Inside the surface, sense < 0, if     F(x,y,z) < 0

Outside the surface, sense > 0, if     F(x,y,z) > 0

On the surface,             sense = 0, if     F(x,y,z) = 0

[Must be careful to consider computer roundoff!]

Note:   Outward surface normal points in direction of   + sense

- +0
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Sides

• A surface divides space into positive & negative sides

– MCNP convention: +1  =  positive side of surface 1
-1  =  negative side of surface 1

– If not sure which side is + or -,  pick a point & substitute
into surface function,  F(x,y,z) -- see if result is + or -

-1
+2

+1 -3

+3

-2
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Intersection & Union of Sides

MCNP convention:
Blank signifies intersection

+1  -2   =  intersection of  
+side of surface 1 and  
-side of surface 2

MCNP convention:
Colon signifies union

-1 : 2  ==  union of
-side of surface 1 with
+side of surface 2

+1  -2 +1  +2

-1  -2 -1  +2

Surface 1 Surface 2

Surface 2

Surface 1
-1  +2

Surface 
2

-1  +2
Surface 1

+

+

-

-
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Cells

• A cell is defined to be the
– Intersection of half-spaces defined by a list of signed surface 

numbers

Example: cell 10 -5
cell 20 +1  -2  +3  -4  +5

– Union of half-spaces defined by signed surface numbers

Example: cell 43 +1 : -2

– The complement of another cell    (i.e., volume NOT in other cell)

Example: cell 30 #50

– A combination of the above 

Example: cell 57 (+1 -2 ) : 3   #50

1 2

4

3

5
10

20
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Cells

• Cells do not have to be convex, & can be reentrant

• Cells may involve discontiguous regions

21

3

(-3 +1) : (-3 -2 -1)
or

(-3 +1) : (-3 -2)

or
-3  (+1 : -2) 

1 2 3
Cell 10 -1 : -2 : -3

Cell 20     #10
or         1  2  3
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Locate Operations

Given point (x,y,z), determine which cell it is contained in:

For(  cell = 1 … n_cells ) {

Foreach surf in  cell {

Evaluate    Ssurf =  sign{  Fsurf(x,y,z)  }

Does   Ssurf match the sense from the cell definition?
}

If all surface-senses for (x,y,z) matched the cell definition,
then exit & return cell as the result

}
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Distance Calculation

Given point (x,y,z) in cell I, 
determine the distance to the cell boundary

d  <-- infinity

Foreach surf in  cell I {

If  surf is part of the external boundary of cell I {

Evaluate    dsurf =   smallest positive root of
Fsurf( x+du, y+dv, z+dw ) = 0

d  =  min(  d,  dsurf )
}

}
return the value of   d
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Neighbor Search

• When a cell boundary is reached, what's on the other side?

• Most codes build "neighbor lists" during tracking
– For each bounding surface of cell, remember list of neighbors
– Initially, neighbor lists are empty
– Check all cells having surface in common, until one is found satisfying 

all sense conditions for the particle position
– Save it
– Later, check neighbor lists first, only do search if necessary

• Neighbor search is expensive at first, cheap later

• Tracking speeds up as calculation progresses

1 2

Easy case

1
2

Hard case

3
4



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       127

Embedded Geometry - Universes

• In most real-world applications, there is a need for modeling 
detailed geometry with many repeating units

• All production Monte Carlo codes provide capabilities for multiple 
levels of nested geometry
– Called "universes" in MCNP
– A collection of cells may be grouped into a "universe"
– Universe may be embedded in another cell, 

with the universe 'clipped' by the cell boundaries
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Universes & Lattices

Universe 1 - cells for detailed fuel pin

Universe 2 - lattice of cells for fuel assembly

Universe 2, with cells filled by Universe 1 

Universe 3 - lattice of cells for reactor

"Real world" - final geometry
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Body Geometry

• Some Monte Carlo codes use primitive bodies rather than 
surfaces for defining cells (e.g., MORSE, KENO, ITS, VIM)

SPH - sphere ELL - ellipsoid
BOX - box REC - right elliptic cylinder
RPP - box RHP - hexagonal prism
RCC - cylinder HEX - hexagonal prism
WED - wedge ARB - arbitrary polyhedron

TRC - truncated cone

• Usually called "combinatorial geometry"
– Invented by MAGI in ~1956, used in SAM-CE & other codes
– Space inside the body has a negative sense, outside a positive sense
– Boolean operators AND, OR, NOT may be used to combine bodies

(like MCNP's  intersection, union, & complement operators)
– MCNP allows body geometry input (calls them "macrobodies"), 

but internally converts them to lists of surfaces
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Special Topics - Simple Cells

• Simple cells are those which can be constructed using only 
intersections, with no union operators

• Some Monte Carlo codes require that all cells be simple cells. 
Union operators are not allowed.

• Tracking through simple cells is fast, at the expense of more 
complex geometry input & setup
– For simple cells, the logic to find the distance to boundary is simple -

check the distance to each of the cell surfaces & keep only the smallest 
positive distance 
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Special Topics - Simple Cells

Consider the example at the left.

Using the union operator, the cell is described by: +1 : -2

Without the union operator, separate cells must be defined & 
then assigned the same material properties:

+1, -1 -2
or -2, +1 +2
or +1 -2, +1 +2, -1 -2

1

2
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Special Topics -Distance Calculations 

• 3D Surface
– F(x,y,z) = 0

• Linear: ∇ F = constant
• Quadratic: ∇ F = f(x,y,z), ∇2F = constant

• Distance calculation
– S = directed distance from (x0,y0,z0) along (u,v,w) to F(x,y,z)=0

= smallest positive root of    F( x0+su, y0+sv, z0+sw ) = 0 

– General form: As2 + 2Bs + C = 0, D = B2 - AC
• 27 combinations  of A, B, C    >0, =0, <0
• Only 12 yield valid solutions:

s = -C/(2B) if (A=0, C<0, B>0) or (A=0, C>0, B<0)

s = (-B-√D)/A if (A>0, C>0, B<0, D>0) or (A<0, C>0, B>0, D>0)
or (A<0, C>0, B<0, D>0) or (A<0, C>0, B=0, D>0)

s = (-B+√D)/A if (A>0, C<0, B>0, D>0) or (A>0, C<0, B<0, D>0)
or (A>0, C<0, B=0, D>0) or (A<0, C<0, B>0, D>0)
or (A>0, C=0, B<0, D>0) or (A<0, C=0, B>0, D>0)

s = ∞ otherwise
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Special Topics -Distance Calculations 

– Noting that    C  =  F(x0,y0,z0)  =  sense at (x0,y0,z0),
the valid solutions can be simplified using the known surface sense §:

s' = -C/(2B) if (A=0, D>0)

s' = (-B-√D)/A if (A≠0, D>0, §>0)

s' = (-B+√D)/A if (A≠0, D>0, §<0)

s' = ∞ otherwise

And

s  = s' if s'>0
= ∞ otherwise
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Special Topics - Common Surfaces

• If 2 surfaces coincide,
neighbor searches become
more complicated & tracking
can slow down significantly

• Most MC codes check for coincident surfaces & eliminate one of 
them (replacing it by the other) 

• The tolerance for coincident surfaces usually defaults to a small 
separation distance (e.g., 1.e-4 cm).  For problems with unusual 
geometry (very small or very large), this may have to be changed 
in the code or code input.

Surface 2Surface 1
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Stochastic Geometry
& HTGR Modeling

(optional)
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Introduction

• Much interest lately in analyzing HTGRs
– Fuel kernels with several layers of coatings
– Very high temperatures
– Contain fission products
– Safety aspects …

• Double heterogeneity problem
– Fuel kernels randomly located within fuel elements
– Fuel elements may be "compacts" or "pebbles"  (maybe random)
– Challenging computational problem

• Monte Carlo codes can faithfully model HTGRs
– Full 3D geometry
– Multiple levels of geometry, including embedded lattices
– Random geometry ?????
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Example - Very High Temperature Gas Cooled Reactor

P. E. MacDonald, et al.,   "NGNP Preliminary Point Design – Results of the Initial Neutronics 
and Thermal-Hydraulic Assessments During FY-03",   INEEL/EXT-03-00870 Rev. 1, Idaho 
National Engineering and Environmental Laboratory (2003).

---
---

---
---

~1
 m

m
 --

---
---

-
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Example - GT-MHR Modeling

Plukiene, R. and Ridikas, D.,  
Modeling of HTGRs with Monte 
Carlo: from a homogeneous to 
an exact heterogeneous core 
with microparticles. Annals of 
Nuclear Energy 30, 1573-1585 
(2003).

kernelscompactassemblyactive core

core
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Example - Pebble Bed Experiments at Proteus Facility

Difilippo, F.C., Monte 
Carlo Calculations of 
Pebble Bed Benchmark 
Configurations of the 
PROTEUS Facility. Nucl. 
Sci. Eng. 143, 240-253 
(2003).

Fuel kernelFuel kernel latticePebbles

Core
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MCNP Models for HTGRs

• Existing MCNP geometry can handle:
– 3D description of core
– Fuel compacts or lattice of pebbles

• Typically, hexagonal lattice with close-packing of spherical pebbles
• Proteus experiments: ~ 5,000 fuel pebbles

~ 2,500 moderator pebbles

– Lattice of fuel kernels within compact or pebble
• Typically, cubic lattice with kernel at center of lattice element
• Proteus experiments: ~ 10,000 fuel kernels per pebble

~ 50 M    fuel kernels, total

– Could introduce random variations in locations of a few thousand cells 
in MCNP input,  but not a few million.

– See papers by:     Difilippo,   Plukiene et al,  Ji-Conlin-Martin-Lee,  etc.
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MCNP5 Stochastic Geometry

• When a neutron enters a new lattice element, a transformation is 
made to the neutron's position & direction to the local coordinates 
of the universe embedded in that lattice element.  [standard 
MCNP]

• Users can flag selected universes as "stochastic" [new]
– A neutron entering a lattice element containing a stochastic universe 

undergoes the normal transformations.

– Then, additional random translations are made:

– Then, tracking proceeds normally, with the universe coordinates fixed 
until the neutron exits that lattice element

x← x + (2ξ1 −1) ⋅ δx
y← y + (2ξ2 −1) ⋅ δy
z← z + (2ξ3 −1) ⋅ δz
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MCNP5 Stochastic Geometry

• Neutron on lattice edge, about to enter embedded universe

• Embedded universe, 
before random translation after random translation

• Track normally, until neutron exits the lattice element
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MCNP5 Stochastic Geometry

• On-the-fly random translations of embedded universes in lattice
– Does not require any extra memory storage
– Very little extra computing cost -

only 3 random numbers for each entry into a stochastic universe

• For K-effective calculations (KCODE problems)
– If fission occurred within fuel kernel, should have source site in next 

cycle be at same position within fuel kernel
– Need to save                 along with neutron coordinates in fission bank
– On source for next cycle, apply                  after neutron pulled from 

bank

• To preserve mass exactly,  rather than on the average stochastically, 
must choose                so that fuel kernels are not displaced out of a 
lattice element

δx, δy, δz
δx, δy, δz

δx, δy, δz

maximum δx
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Numerical Results -- HTGR Fuel Kernels

• Infinite array of TRISO fuel kernels in graphite matrix
– Fuel kernel geometry & composition taken from the NGNP Point 

Design (MacDonald et al. 2003) 

• Calculations run 4 ways:
1. Fixed lattice  with centered kernels
2. Fixed lattice  with random kernels   [MCNP stochastic geometry]
3. Multiple lattice realizations
4. Box of randomly place kernels  

TRISO Fuel Kernel Geometry and Composition 
 

Region 
#  

Name Outer radius 
( ) 

Composition Density 
(g/cc) 

1 Uranium oxycarbide 175 UCO (UC.5O1.5) 10.5 
2 Porous carbon buffer 275 C 1.0 
3 Inner pyrolytic carbon 315 C 1.9 
4 Silicon carbide 350 SiC 3.2 
5 Outer pyrolytic carbon 390 C 1.9 
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Calculations - Case #1

• Fixed lattice with centered kernels
– 5x5x5 cubical lattice
– Lattice edge chosen to preserve the specified packing fraction.
– Fuel kernels centered within the cubical cells
– Reflecting boundaries on the outer surfaces
– Essentially same as Difilipo, Plukiene et al, Ji-Conlin-Martin-Lee
– No random geometry,  standard MCNP5 calculations
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Calculations - Case #2

• Fixed lattice  with random kernels   [MCNP stochastic geometry]
– 5x5x5 cubical lattice
– Lattice edge chosen to preserve the specified packing fraction.
– Fuel kernels randomly placed on-the-fly within the cubical cells
– Reflecting boundaries on the outer surfaces
– Uses new MCNP5 stochastic geometry

Fuel kernel displaced randomly 
within lattice element each time 
that neutron enters 
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Calculations - Case #3

• Multiple lattice realizations
– 5x5x5 cubical lattice
– Lattice edge chosen to preserve the specified packing fraction.
– Fuel kernels randomly placed in job input within the cubical cells
– Reflecting boundaries on the outer surfaces
– Uses standard MCNP5
– 25 separate calculations, each with different location of kernels in the 

input files

1 realization, fixed lattice
with kernel locations chosen
randomly in problem input
& held constant during 
each MCNP calculation
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Calculations - Case #4

• Box of randomly placed fuel kernels
– Single box with 125 fuel kernels
– Box size chosen to preserve the specified packing fraction.
– Fuel kernels randomly placed in job input within the box (using RSA 

algorithm, Random Sequential Addition)
– Reflecting boundaries on the outer surfaces
– Uses standard MCNP5
– 25 separate calculations, each with different location of kernels in the 

input files

2 different realizations of "truly random" cases:
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Numerical Results

MCNP5 Results for Infinite Lattices of Fuel Kernels

# Method K-effective
1 Fixed 5x5x5 lattice with 

centered spheres
1.1531 ± 0.0004

2 Fixed 5x5x5 lattice with 
randomly located spheres ("on 
the fly")

1.1515 ± 0.0004

3 Multiple (25) realizations of  
5x5x5 lattice with randomly 
located spheres

1.1513 ± 0.0004

4 Multiple (25) realizations of 
randomly packed (RSA) fuel 
"box"

1.1510 ± 0.0003
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Conclusions

• The new stochastic geometry treatment for MCNP5 provides an 
accurate and effective means of modeling the particle heterogeneity in 
TRISOL particle fuel
– Same results as (brute-force) multiple realizations of random geometry 

input with standard MCNP
– Negligible difference from "truly random" multiple realizations

• The results indicate that:
– The neutronic effect of using a fixed lattice is negligible
– The effect of choosing either a centered spheres or randomly located 

spheres is also small, at least for the specific fuel geometry that was 
analyzed during this study

• Future work
– Examination of finite geometries, including cylindrical fuel compacts, 

hexagonal fuel blocks, and full core configurations. 
– We will also consider lattices other than simple cubic lattices, such as 

BCC, FCC, and HCP lattices.  
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Collision
Physics
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Monte Carlo Calculations

• Geometry routines determine the cell & material in that cell

• Collision routines model the physical interactions with the material
– Random sampling from PDFs determined by cross-section data

• Continuous: flight distance,  exit E & direction,   …..
• Discrete: select nuclide,  select interaction type,  secondaries, …

Physics
• How far to collision?     
• Which nuclide?
• New E, direction?
• Secondaries?
• Survival?

Tallies
• Tally events of interest
• Compute results
• Compute statistics
• Balances
• Performance stats

Geometry
• Which cell is particle in?
• What will it hit next?
• How far to boundary?
• What’s on other side?
• Survival?

mcnp, rcp, vim, racer, sam-ce, tart, morse, keno, tripoli, mcbend, monk, o5r, recap, andy,…..
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Monte Carlo Calculations

• After a particle emerges from source or collision, or if the particle 
is on a cell bounding surface:

– Randomly sample the free-flight distance to the next interaction

– If the distance-to-interaction is less than the distance to cell 
boundary, then move the particle to the interaction point

– Collision physics at the interaction point:
• Determine which isotope the interaction is with
• Determine which reaction type for that isotope
• Determine the exit energy & direction of the particle
• Determine if secondary particles were produced
• Biasing + weight adjustments
• Tallies of quantities of interest
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Collision Physics

Free-flight distance
to next collision, s

Collision isotope,
Reaction type,
Exit E'  &  (u',v',w'),
Secondary particles
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Sampling the Flight Distance

• Given a particle at (x0,y0,z0) with direction (u,v,w) in cell I containing 
material M,   sample the free-flight distance to the next interaction

– ΣT = total macroscopic cross-section in material M
= sum{  NkσTk },     where  k = isotopes in material M
= probability of any interaction per unit distance, units cm-1

– PDF for flight distance s,   where  0 ≤  s ≤  ∞,

f(s) = {prob interaction p.u.d}  ∙  {prob travelling dist s w/o interact}
f(s) = ΣT exp( -ΣT s )

– Sampling procedure
F(s) = 1 - exp( -ΣT s )       ➜ s = - ln(ξ) / ΣT
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Selecting the Collision Isotope

• where   j = isotopes in material M

• Probability that collision is with isotope k

• { pk } = set of discrete probabilities for selecting collision isotope

• { Pk } = discrete CDF,     Pk = sum{ pi, i=1,k },   P0=0

• Discrete sampling for collision isotope k
table search to determine  k such that    Pk-1 ≤  ξ <  Pk

ΣT = N(j)σT
( j)

j
∑

pk =
N(k)σT

(k)

ΣT
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Selecting the Reaction Type

• For collision isotope k,
σT =  σelastic +  σinelastic +  σcapture +  σfission +  …..

• pj =  σj / σT =  probability of reaction type j for isotope k

• { pj } = set of discrete probabilities for selecting reaction type j

• { Pj } = discrete CDF,     Pj = sum{ pi, i=1,j },   P0=0

• Discrete sampling for reaction type j
table search to determine  j such that    Pj-1 ≤  ξ < Pj
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Selecting the Reaction Type - Modified

• In many applications, survival biasing is an effective variance reduction 
technique
– Survival biasing is also called implicit absorption,  nonabsorption

weighting,  or (loosely) implicit capture
– ΣT = Σabsorption + Σscatter (absorption = disappearance)

– Probability that particle survives collision   =  Psurv =  Σscatter/ΣT
– Probability that particle is absorbed (killed) = 1 - Psurv

• Disallow absorption of particle,  & then adjust particle weight to ensure a 
fair game
– Tally absorption of      wgt ∙ (1-Psurv)
– Multiply particle weight by     Psurv
– When selecting collision isotope:     use ΣS's, not ΣT's for isotopes
– When selecting reaction type:          don't include σA
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Sampling Exit Energy & Direction

• Given a collision isotope k & reaction type j, the random sampling 
techniques used to determine the exit energy and direction,  E' 
and (u',v',w'), depend on 
– Conservation of energy & momentum
– Scattering laws - either equations or tabulated data

• Examples 
– Isotropic scattering in lab system [example on next slides]
– Multigroup scattering [example on next slides]
– Elastic scattering, target-at-rest [example on next slides]
– Inelastic scattering, MCNP
– Other collision physics, MCNP
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Isotropic Scatter in Lab System

• Elastic scattering from infinite-mass target nucleus

– No change in energy:

E' = E

– Sample direction from isotropic scattering PDF,    f(u',v',w') = 1 / 4π

φ= 2π ξ1 ß uniform azimuthal

u'  =  2ξ2 – 1 ß isotropic, uniform in u'
v' =  sqrt(1-u'2) cos(φ)
w' =  sqrt(1-u'2) sin(φ)
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Isotropic Scatter – Sampling the Scattering Angle

• Consider isotropic scattering
– Any direction is equally likely
– Interpret as:

"pick a random point on a unit sphere, 
then get direction-cosines"

• Rejection method for scatter 
angle sampling
– Pick  x,y,z randomly in unit cube
– If x,y,z outside unit sphere, 

reject and try again
– If x,y,z inside   unit sphere, 

scale so that  x2+y2+z2 = 1
– Get direction-cosines of angles,  u,v,w

• Direct method for scatter angle 
sampling

➜ μ  is distributed uniformly in [-1,1]
➜ φ is distributed uniformly in [0,2π]

μ   ←   2ξ1 - 1
φ ←   ξ2 2 π

φ

θμ= cos θ

f(Ω̂) = 1
4π

, dΩ̂
4π

= sinθ ⋅dθ
2

⋅ dφ
2π

f(θ,φ) = sinθ ⋅dθ
2

⋅ dφ
2π

, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π

f(θ) = f(θ,φ)dφ = sinθ
20

2π

∫
µ = cosθ, dµ = −sinθ ⋅dθ, −1≤ µ ≤ +1

f(µ) = f(θ) dθ
dµ

= sinθ
2

⋅ 1
sinθ

= 1
2
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Multigroup Scattering

• Multigroup approach
– Divide energy range into intervals (groups)
– Use average cross-sections for each group:     ΣTg, ΣSg, ΣAg, 𝝂ΣFg

– Use discrete transfer matrix for group-to-group scatter,
Σgg' = cross-section for scatter from group g to group g'

• Multigroup scattering
– For particle with energy E, determine initial energy group g 
– Select exit energy group g' by discrete sampling from  Σgg'

– Sample exit energy uniformly within bound of group g'
– Direction

• For P0 scattering - use procedure for isotropic lab scatter
• For P1 scattering - sample mu from linear PDF, then select new direction

(see next section on elastic scatter) 

p ′g =
Σg→ ′g

ΣSg

ΣSg = Σg→k
k=1

G

∑
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Elastic Scattering, Target-at-rest

• Sample μcm from tabulated PDF data,  f(μcm )

• Use kinematics to get E'lab &  μlab

• Sample azimuthal angle φ uniformly on (0,2π)

• Rotate particle direction using  μlab &  φ

φ
θlab

μcm = cos θcm
μlab = cos θlab

θ = scattering angle,
cm or lab
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Sampling the Scattering Direction-cosine, μcm

• Typical representations for  f(μcm)

– Histogram  or  Equiprobable Histogram PDF

– Piecewise linear PDF

-1 +1
μcm

-1 +1
μcm
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Elastic Scatter - E'  & μlab

• Target-at-rest elastic scatter in lab system – kinematics
(from conservation of energy & momentum)

E

E'
θlab μlab = cosθlab

  

� 

E' = E • A2 + 2Aµcm + 1
(A + 1)2

  

� 

µlab = 1+ Aµcm

A2 + 2Aµcm + 1

Where   A = (mass target)/(mass particle)
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Exit Direction

• Rotation from (u,v,w) to (u',v',w') using  μlab &  φ

  

� 

φ = 2πξ

u' = µu + 1−µ2 (uw cosφ − vsinφ)
1− w2

v' = µv + 1−µ2 (vw cosφ + usinφ)
1− w2

w' = µw − 1−µ2 1− w2 cosφ

φ
θlab

μ= μlab

If μ  close to 1, 
special coding may be
used to avoid roundoff
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Inelastic Scattering - MCNP

– Law 1 ENDF law 1 - Equiprobable energy bins
– Law 2 Discrete photon energies
– Law 3 ENDF law 3 - Inelastic scatter from nuclear levels
– Law 4 ENDF law 4 - Tabular distribution
– Law 5 ENDF law 5 - General evaporation spectrum
– Law 7 ENDF law 7 - Simple Maxwell fission spectrum
– Law 9 ENDF law 9 - Evaporation spectrum
– Law 11 ENDF law 11 - Energy dependent Watt spectrum
– Law 22 UK law 2 - Tabular linear functions of incident energy out
– Law 24 UK law 6 - Equiprobable energy multipliers
– Law 44 ENDF law 1, lang 2, Kalbach-87 correlated energy-angle scatter
– Law 61 ENDF law 11, lang 0,12, or 14 - correlated energy-angle scatter
– Law 66 ENDF law 6 - N-body phase space distribution
– Law 67 ENDF law 7 - correlated energy-angle scatter
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Other Collision Physics - MCNP

– Emission from fission
– Delayed neutron emission
– S(α,β) scattering for thermal neutrons
– Free-gas scattering for neutrons
– Probability tables for the unresolved resonance energy range for neutrons

– Photoelectric effect
– Pair production
– Compton scattering (incoherent)
– Thomson scattering (coherent)
– Fluorescent emission

– Photonuclear reactions

– Electron interactions - condensed history approach
• Stopping power, straggling, angular deflections
• Bremsstrahlung
• K-shell impact ionization & Auger transitions
• Knock-on electrons
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Secondary Particle Creation

• Consider a collision which results in fission
wgt • 𝝂ΣF/ΣT =  expected number of fission neutrons produced per collision

• To sample the number of neutrons produced in the collision

– Let r = wgt • 𝝂ΣF/ΣT
n = int[ r ]

– Then, Produce  n  fission neutrons with probability 1
and  an additional fission neutron with probability  r-n

– Example: wgt • 𝝂ΣF/ΣT = 1.75

If  ξ < .75, produce 2 neutrons,  otherwise produce 1
or

Produce    int[ 1.75 + ξ ]  neutrons
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Alternative Schemes for Flights/Collisions

• Conventional scheme
– Particle weight constant during flight
– Use ΣT to determine distance-to-collision,    s = -lnξ/ ΣT

– Change weight only on collisions
– For pathlength absorption estimator, tally    wgt ∙ s ∙ ΣA

– Most common scheme for reactors & shielding applications

• Continuous absorption
– Particle weight decreases continuously during flight, due to absorption

– Use ΣS to determine distance-to-scattering,  s = -lnξ/ Σs

– For pathlength absorption estimator, tally    
– No absorption in collision
– Typical use in astrophysics (Implicit Monte Carlo codes)

wgt(s) = wgt0 ⋅e
−ΣAs

wgt0 ⋅ (1− e
−ΣAs )
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Tallies
&

Statistics
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Monte Carlo Calculations

• During a history, tally the events of interest

• Upon completing a history, accumulate total scores & squares

• After completing all histories, compute mean scores & standard deviations 

Physics
• How far to collision?     
• Which nuclide?
• New E, direction?
• Secondaries?
• Survival?

Tallies
• Tally events of interest
• Compute results
• Compute statistics
• Balances
• Performance stats

Geometry
• Which cell is particle in?
• What will it hit next?
• How far to boundary?
• What’s on other side?
• Survival?

mcnp, rcp, vim, racer, sam-ce, tart, morse, keno, tripoli, mcbend, monk, o5r, recap, andy,…..



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       177

Monte Carlo Estimates of Integrals

Given a function R(x), where x is a random variable with PDF f(x),

– Expected value of R(x) is

– Variance of R(x) is

Monte Carlo method for estimating     :
make  N  random samples       from f(x)
– Then

– Central Limit Theorem states that for large N, 
the PDF of       approaches a Gaussian distribution

– That is, if the Monte Carlo problem is repeated,
will be normally distributed

R = R(x) f(x) dx∫

  

� 

R ≈ 1
N

R(ˆ x j)
j= 1

N

∑
  

� 

ˆ x j

  

� 

σ 2 = R2 (x) f(x) dx − µ 2∫

  

� 

R 

  

� 

R 

  

� 

R 
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Laws of Large Numbers

Let  x1, x2, …, xN be a sequence of independent, identically distributed 
random variables each with a finite mean   E[xj] = μ and let 

• Weak Law of Large Numbers
For any  ε > 0

Tells how a sequence of probabilities converges

• Strong Law of Large Numbers

Tells how the sequence of IID random variables behaves in the limit

  

� 

x N = 1
N

xj
j= 1

N

∑

  

� 

lim
N→∞

P( x N − µ > ε ) = 0

  

� 

P lim
N→∞

x N − µ > ε⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ = 0
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Central Limit Theorem

• Central Limit Theorem

± 1 σ:

Note: 32% of the time,  should be outside range

± 2 σ:

Note: 5% of the time,  should be outside range

  

� 

N→∞
lim Prob µ − a σ

N
≤ x ≤ µ + b σ

N
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= 1
2π

e− t 2
dt

−a

b

∫

  

� 

Prob µ − σ
N

≤ x ≤ µ + σ
N

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= 68%

  

� 

Prob µ − 2σ
N

≤ x ≤ µ + 2σ
N

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= 95%

  

� 

µ ± σ
N

  

� 

µ ± 2σ
N

  

� 

x 

  

� 

x 
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� 

       mean score = 1
N

• S1

std dev of mean = 1
N− 1

S2
N

− S1
N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

Tallies & Statistics

• For a given history, tally events of interest
– Example - surface crossings

• For each particle crossing surface A, accumulate the weight each time a 
particle crosses that surface

• A particular particle may cross the surface more than once
• Progeny of that particle (e.g., another particle created by splitting) may 

also cross that surface one or more times

• When the history is complete, add the score & score2 to 
accumulators for the problem

S1problem =  S1problem +  (Shistory)
S2problem =  S2problem +  (Shistory)2

• When all N histories are complete, compute final mean score & 
standard deviation
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Variance of the Population vs. Mean

• Given a set of random samples,   x1, x2, …, xN,

– Mean 

– Population variance [what you normally see in statistics textbooks]

– Variance of the mean [what you normally find in MC codes]

  

� 

x = 1
N

xj
j= 1

N

∑

σ 2 = 1
N

xj
2

j=1

N

∑ − 1
N

xj
j=1

N

∑
⎛

⎝⎜
⎞

⎠⎟

2

= 1
N

xj
2

j=1

N

∑ − x 2

 

σ x
2 = σ 2

N
= 1

N
⋅ 1
N

xj
2

j=1

N

∑ − x 2
⎛

⎝⎜
⎞

⎠⎟

σ x 
1
N
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Tally Bins

• Tallies can be made for selected events & portions of phase space:
– Range of energies,  E1 - E2

– Range of particle times,   t1 - t2

– Specified cells
– Specified surfaces
– Specified range of  n∙Ω for surface crossings
– Specified reaction cross-sections  Σx

– Secondary particle production
– Energy deposited in cell
– Conditional events, e.g., absorption in cell B due to source in cell A
– Energy of neutrons causing fission
– Scattering from energy range E1-E2 to range E3-E4

– Etc.
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Flux & Current

• Angular flux

• Flux

– Scalar quantity
– Total distance traveled by all particles in a cm3 per second
– Units: distance / cm3-sec    =    1 / cm2-sec

• Current
– Number of particles crossing surface per second per unit area
– Units: 1 / cm2-sec
– Partial current:    in + or - direction only, J+ or J-

– Net current =   J = J+ - J-

  

� 

φ (r) = dE
E1

E2

∫ dΩΨ(r,E,Ω)
4π
∫

    

� 

J(r) = dE
E1

E2

∫ dΩ  n • Ω Ψ(r,E,Ω)
4π
∫

    

� 

J+ (r) = dE
E1

E2

∫ dΩ  n • Ω Ψ(r,E,Ω)
 
n •Ω> 0
∫

    

� 

J− (r) = dE
E1

E2

∫ dΩ  n • Ω Ψ(r,E,Ω)
 
n •Ω< 0
∫

  

� 

Ψ(r,E,Ω)
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Reaction Rates

• For a particular reaction "x"

– Reactions per cm3 per sec

• Collision density

• Energy deposition (average per collision)

  

� 

Rx (r) = dE
E1

E2

∫ dΩΨ(r,E,Ω)Σx (r,E)
4π
∫

  

� 

C(r) = dE
E1

E2
∫ dΩΨ(r,E,Ω)ΣT (r,E)

4π
∫

  

� 

Edeposited (r) = dE
E1

E2

∫ dΩΨ(r,E,Ω)ΣT (r,E)
4π
∫ Κ (r,E)

where Κ (r,E) = average E deposited per collision
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Analog vs. Weighted Monte Carlo

• Analog Monte Carlo
– Faithful simulation of particle histories
– No alteration of PDFs  (I.e., no biasing or variance reduction)
– At collision, particle is killed if absorption occurs
– Particle is born with weight = 1.0
– Weight unchanged throughout history until particle is killed
– Score 1.0 when tallying events of interest

• Weighted Monte Carlo  (non-analog)
– Alter the PDFs to favor events of interest
– Particle is born with weight = 1.0
– Weight is altered if biased PDF is used
– Typically, particle always survives collision & weight is reduced by Psurv
– Weight can also be changed by Russian roulette/splitting & other 

variance reduction techniques
– Score  wgt  when tallying events of interest
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Tally Types

• Current tallies
– Surface crossing estimator

• Flux tallies
– Pathlength estimator
– Collision estimator
– Surface crossing estimator
– Next event estimator (point detector)

• Reaction rate tallies
– Any of the above flux estimators times a cross-section

• Energy deposition tallies
– Any of the above flux estimators times ΣT times energy 

deposited per collision
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Basic Tallies

Current across surface

W = total source weight

Flux on surface

A = surface area
W = total source weight
μ  = Ω • [surface normal]

Flux in a cell

V = cell volume
W = total source weight

Flux at a point

φ =
1

V ⋅W
wgt • dist

all flights
  in cell

∑

φ =
1
W

wgt ⋅ p(µ)e−ΣTR

2πR2
     all
collisions

∑

J =
1
W

wgt
     all flights
crossing surface

∑

φ =
1

A ⋅W
wgt
µ     all flights

crossing surface

∑
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Current Tallies

• For each particle crossing surface, tally the particle weight

• Divide by total starting weight & surface area to get current

W = total starting weight
A  = surface area

• Typically, keep separate tally for outward partial current for each 
surface of a cell

• Can get net current by combining partial currents

wgt1

wgt2

wgt3  

� 

J = 1
W A

wgt j
all

particles
crossing
surface

∑
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Flux Tally - Pathlength

• For each particle flight within a cell, tally (pathlength*weight) 

• Divide by cell volume & total starting weight to get flux estimate

W = total starting weight
V  = cell volume

wgt2 wgt3

wgt1

d2

d1

d3  

� 

φ = 1
W V

• dj • wgt j
all

particle
flights
in cell

∑
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Flux Tally - Collisions

• Since  (ΣTφ) is collision rate, for each collision, 
tally   (wgt/ΣT)   to estimate flux

• Divide by total starting weight & cell volume

wgtj = weight of particle entering collision

W = total starting weight
V  = cell volume

wgt2

wgt1

  

� 

φ = 1
W V

•
wgt j

ΣT (Ej)all
collisions
in cell

∑
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Flux Tally - Surface Crossing

• Consider particles crossing a surface
– Put a "box" of thickness  a  around the surface
– Pathlength estimate of flux in the box

– Note that  a  cancels out
– Take the limit as  a→0

• Surface crossing estimate of flux

wgt1

wgt2

wgt3

a

μ2

μ1

μ3

  

� 

φ = 1
W aA

• wgt j • a
µ jall

particles
crossing
surface

∑

where µ j = cosθ j

    

� 

φ = 1
W A

•
wgt j

µ jall
particles
crossing
surface

∑ where µ j = Ω j •
 
S 
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Flux Tally - Surface Crossing

• Complication: wgtj/μj can be very large for small μj
– Usual solution,  based on theory from FH Clark, "Variance of 

Certain Flux Estimators Used in Monte Carlo Calculations", 
Nucl.Sci. Eng. 27, 235-239 (1967)

– For small |μ|,  that is,  -ε < μ < ε,   (where ε is small),  if it is 
assumed that the flux is only isotropic or linearly anisotropic, 
then the expected value of   1/|μ|  is  2/ε. 

• Actual tally procedure:
– If   |μ|<ε,  then replace  |μ|  by  ε/2  to score an expected flux. 
– This results in a reliable variance, without affecting the flux 

estimate significantly.

• MCNP uses  ε=.1.     Many other codes use ε=.001
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Flux at a Point

• Instead of estimating flux for a cell or surface, it may be useful to 
estimate flux at a point
– Probability of a history trajectory going through a particular point is 

zero

• Use a "next event estimator" to get flux at a point
– Regardless of the actual outcome of simulating a collision, 

estimate what would happen if the particle scattered exactly in 
the direction of a point detector

θ

Actual path
after collision

Path to 
point detector

R
  

� 

Expected φ score = wg ′ t • psc (µ)
2πR2 • exp − ΣT (E' )ds

0

R

∫
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

where wg ′ t = weight after collision
psc (µ) = scatter PDF evaluated at µ
′ E = energy corresponding to µ
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Flux at a Point

• Expected score has 1/R2 singularity - collisions close to detector can 
result in large scores
– Point detector estimator has finite mean, but infinite variance 

due to 1/R2 singularity

• To keep variance finite:
– For collisions within radius  𝕽 of detector, replace the factor

by volume average assuming uniform collisions inside sphere

– Typically choose  𝕽 to be  ~half  a mean free path

  

� 

exp − ΣT ( ′ E )ds
0

R

∫
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

R2

  

� 

e−ΣT ( ′ E )sds
0

ℜ

∫

s2ds
0

ℜ

∫
= 1− eΣT ( ′ E )ℜ

1
3ℜ

3ΣT ( ′ E )
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Reaction Rate Tallies

• Tally   (flux-estimator)•(cross-section)
• Example - pathlength tallies

After each flight,     tally

– Flux

– Total absorption

– Nu-fission

– U235 absorption

  

� 

wgt • dj

  

� 

wgt • dj • ΣA

  

� 

wgt • dj • νΣF

  

� 

wgt • dj • NU235
σA

U235
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Mesh Tallies & Fission Matrix

• Mesh Tallies
– Impose a grid over the problem & tally flux or reaction rates in 

each grid cell

• Fission matrix
– Impose a grid over problem 
– Tally F(I→J) for source in cell I causing fission in cell J
– For N cells in grid,  N2 tallies
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Cautions

• Some codes (e.g., MCNP) report the 
mean score & relative error;

– RE should decrease smoothly with 1/√N  dependence as more histories are run

• Tallies are reliable only if "enough" histories traverse the portions of 
problem phase space being tallied
– Undersampling can lead to questionable or erroneous values of 

the mean score & relative error
– Indicators of undersampling:

• Large RE,   RE > .1
• RE does not decrease smoothly as  1/√N  
• A few histories have very large scores

• MCNP performs statistical checks on selected tallies to try to detect 
undersampling effects
– Large RE
– Variance of the variance (VOV)
– Tally fluctuation charts (distribution of scores)
– Slope of tails in tally fluctuation charts
– Etc.

  

� 

RE = σ x 

x 
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RE & FOM

• Some codes (e.g., MCNP) report the mean score & relative error

• Some codes report a Figure-of-Merit for selected tallies

Where T = computer time used

– RE2 ~ 1/N,   where N is the total number of histories
– T ~ N
– Therefore, FOM should be roughly constant
– Used for comparing effectiveness of different variance reduction 

schemes

  

� 

RE = σ x 

x 

FOM = 1
RE2 • T
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Combining Independent MC Results 

Given N sets of (mean,std-dev) for independent Monte Carlo  
calculations,   ( x1, σ1 ),   ( x2, σ2 ), … ,  how should the results be 
combined?

Weighting factors ~  1/σ2

  

� 

w j = 1
σ j

2 W = 1
σ j

2
j= 1

N

∑

  

� 

x =
w j

W
xj

j= 1

N

∑

σ x 
2 =

w j

W2 = 1
Wj= 1

N

∑
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Combining Correlated Tallies

• Suppose 2 estimators, x and y, are correlated, such as the path & 
collision estimator for Keff

Minimum variance combination of x & y

  

� 

x = 1
N xj

j= 1

N

∑
  

� 

y = 1
N y j

j= 1

N

∑

  

� 

σx
2 = 1

N xj
2 − x 2

j= 1

N

∑
  

� 

σ y
2 = 1

N y j
2 − y 2

j= 1

N

∑
  

� 

σxy
2 = 1
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Eigenvalue Calculations - I

•  k- and α- Eigenvalue Equations
•  Power Iteration
•  Convergence
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Reactor Analysis with Monte Carlo
Geometry Model (1/4) K vs cycle Hsrc vs cycle

Assembly Powers Fast Flux Thermal Flux



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       203

The Challenge

For Monte Carlo calculations of just K-effective,
plots of   kcycle vs cycle   are adequate to judge convergence.

To compute   power distributions,  heating distributions,
dose rates,  production/depletion,  &  local reaction rates,
new tools are needed to judge convergence of the source 
distribution

• The source distribution takes longer to converge 
than K-effective

• How do you tell if a 3D distribution has converged ?

• For the past 40 years, people calculating power 
distributions or production/depletion with Monte Carlo 
were "flying blind" -- no tools were available to assess 
source convergence
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Source Distribution Convergence

Fuel Storage Vault K vs cycle Hsrc vs cycle

Assembly Heating Distribution

For this calculation,
• Should discard     ~20 cycles if calculating Keff  only
• Should discard ~2000 cycles if calculating heating distribution

20 ? 2000
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K- and  α-
Eigenvalue Equations
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Time-dependent Transport

• Time-dependent linear Boltzmann transport equation for neutrons,  
with prompt fission source & external source

• This equation can be solved directly by Monte Carlo, assuming:
– Each neutron history is an IID trial    (independent, identically 

distributed)
– All neutrons must see same probability densities in all of phase space
– Usual method:   geometry & materials fixed over solution interval Δt

 

1
v
∂ψ(

r,E,

Ω,t)

∂t
= Q(


r,E,
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r, ′E , ′

Ω ,t)ΣS(


r, ′E →E,


Ω⋅

′Ω )∫∫ d

′Ω d ′E

+ χ(

r,E)
4π

νΣF(

r, ′E )ψ(∫∫
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Ω ,t)d


′Ω d ′E

−

Ω⋅∇ + ΣT(


r,E)⎡⎣ ⎤⎦ ⋅ ψ(


r,E,
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1
v
∂ψ(

r,E,

Ω,t)

∂t
= Q + [S+M] ⋅ψ − [L + T] ⋅ψ
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Time-dependent Transport

• Monte Carlo solution   (over Δt, with fixed geometry & materials)
– Simulate time-dependent transport for a neutron history
– If fission occurs, bank any secondary neutrons. 
– When original particle is finished, simulate secondaries till done.
– Tallies for time bins, energy bins, cells, …

• At time  t,  the overall neutron level is

• Alpha  & T (reactor period) can be defined by:

N(t) =  N0 e α t =    N0 e t / T

This is the "dynamic alpha",  NOT an eigenvalue !

 

1
v
∂ψ(

r,E,

Ω,t)

∂t
= Q + [S +M] ⋅ ψ − [L + T] ⋅ ψ

α = 1
T

≈
ln N(t) − ln N0

t − t0

 
N(t) = ψ(


r,E,Ω̂,t)
v

r ,E,Ω̂
∫∫∫ d


rdEdΩ̂
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• Random Walk for particle

• Particle History

Particle Histories

Track through geometry,
- select collision site randomly
- tallies

Collision physics analysis,
- Select new E,Ω  randomly
- tallies

Secondary
Particles

Source
- select r,E,Ω

Random
Walk

Random
Walk

Random
Walk

Random
Walk

Random
Walk

Random
Walk
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Fixed-source Monte Carlo Calculation

Source
- select r,E,Ω

Random
Walk Random

Walk

Random
WalkRandom

Walk

Random
Walk

Random
Walk

Source
- select r,E,Ω

Random
Walk Random

Walk

Random
Walk

Random
Walk

Random
Walk

Source
- select r,E,Ω

Random
Walk Random

Walk

Random
Walk

Random
Walk

Random
Walk

Random
Walk

History 1

History 2

History 3
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Alpha Eigenvalue Equations 

• For problems which are separable in space & time, it may be advantageous to 
solve a static eigenvalue problem, rather than a fully time-dependent 
problem

• Assume:
1. Fixed geometry & materials
2. No external source: Q(r,E,Ω,t) = 0
3. Separability: 𝚿(r,E,Ω,t) =  𝚿α(r,E,Ω) eαt,

• Substituting 𝚿 into the time-dependent transport equation yields  

– This is a static equation,  an eigenvalue problem for α and 𝚿α
without time-dependence 

– α is often called the time-eigenvalue or time-absorption
– α -eigenvalue problems can be solved by Monte Carlo methods

 
L + T + α

v
⎡
⎣⎢

⎤
⎦⎥
Ψα (

r,E,

Ω) = S +M[ ]Ψα
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Keff Eigenvalue Equations 

• Another approach to creating a static eigenvalue problem from the time-
dependent transport equation is to introduce Keff, a scaling factor on the 
multiplication (𝝂)

• Assume:
1. Fixed geometry & materials
2. No external source: Q(r,E,Ω,t) = 0
3. ∂𝚿/∂t = 0: 𝝂 ➜ 𝝂 / keff

• Setting  ∂𝚿/∂t  = 0   and   introducing the  Keff eigenvalue gives

– This is a static equation,  an eigenvalue problem for Keff and 𝚿k without 
time-dependence 

– Keff is called the effective multiplication factor
– Keff and  𝚿k should never be used to model time-dependent problems.         
– Keff-eigenvalue problems can be solved by Monte Carlo methods

 
L + T[ ]Ψk(


r,E,

Ω) = S + 1

Keff

M
⎡

⎣
⎢

⎤

⎦
⎥Ψk
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Comments on Keff and α Equations

• Criticality
Supercritical: α > 0 or Keff > 1

Critical: α = 0 or Keff = 1

Subcritical: α < 0 or Keff < 1

• Keff vs. α eigenvalue equations
– 𝚿k(r,E,Ω) ≠ 𝚿α(r,E,Ω),   except for a critical system

– α eigenvalue &  𝚿α eigenfunction used for   time-dependent problems
– Keff eigenvalue &  𝚿k   eigenfunction used for   reactor design & analysis

– Although  α = (Keff-1)/λ,  where  λ = lifetime,
there is no direct relationship between 𝚿k(r,E,Ω) and 𝚿α(r,E,Ω)

• Keff eigenvalue problems can be solved directly using Monte Carlo 

• α eigenvalue problems are solved by Monte Carlo indirectly
using a series of Keff calculations
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Comments on Keff and α Equations

K equation [ L + T ] 𝚿k =   [S  +  1/k M ] 𝚿k

α equation [ L + T +  α/v ] 𝚿α =   [S  +  M ] 𝚿α

• The factor  1/k  changes the relative level of the fission source

• The factor   α/v   changes the absorption  &   neutron spectrum
– For α > 0,  more absorption at low E  ➜ harder spectrum
– Double-density Godiva, average neutron energy causing fission:

k calculation: 1.30  MeV
α calculation: 1.68  MeV

• For separable problems,   𝚿(r,E,Ω,t) =  𝚿α (r,E,Ω) eαt

• No similar equation for k,  since not used for time-dependence
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Power Iteration
&

Convergence
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K-eigenvalue equation

where
L = leakage operator S = scatter-in operator
T = collision operator M = fission multiplication 

operator
• Rearrange

➜ This eigenvalue equation will be solved by power iteration

(L + T)Ψ = SΨ + 1
Keff
MΨ

(L + T − S)Ψ = 1
Keff
MΨ

Ψ = 1
Keff

⋅ (L + T − S)−1MΨ

Ψ = 1
Keff

⋅FΨ

Ψ(n+1) = 1
Keff
(n) ⋅FΨ(n)
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Power Iteration
Diffusion Theory or

Discrete-ordinates Transport

1. Initial guess for Keff and 𝚿
Keff(0), 𝚿(0)

2. Solve for 𝚿(n+1)

Inner iterations over space or
space/angle to solve for 𝚿(n+1)

3. Compute new Keff

4. Repeat 1-3 until both Keff
(n+1) and     𝚿 (n+1)

have converged

Monte Carlo

1. Initial guess for Keff and 𝚿
Keff(0), 𝚿(0)

2. Solve for 𝚿 (n+1)

Follow particle histories
to solve for 𝚿 (n+1)

During histories, save fission sites
to use for source in next iteration

3. Compute new Keff
During histories for iteration (n+1),
estimate Keff(n+1)

4. Repeat 1-3 until both Keff
(n+1) and    𝚿 (n+1)

have converged
5. Continue iterating, to compute tallies

(L + T − S)Ψ(n+1) = 1
Keff
(n) MΨ(n) (L + T − S)Ψ(n+1) = 1

Keff
(n) MΨ(n)

 
Keff
(n+1) = Keff

(n) ⋅
MΨ(n+1)d


r∫

MΨ(n)d

r∫

 
Keff
(n+1) = Keff

(n) ⋅1iMΨ(n+1)

1iMΨ(n)
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• Power iteration for Monte Carlo k-effective calculation
Initial
Guess

Batch 1
Keff(1)

Batch 2
Keff(2)

Batch 3
Keff(3)

Batch 4
Keff(4)

Batch 1
Source

Batch 3
Source

Batch 4
Source

Batch 5
Source

Batch 2
Source

Power Iteration

Source particle generation
Monte Carlo random walk

Neutron
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α-Eigenvalue Calculations 

• Eigenvalue equation with both Keff & α
– α is a fixed number, not a variable or eigenvalue
– Find the k-eigenvalue as function of α,   K(α)

• Note: If α < 0
– Real absorption plus time absorption could be negative
– Move α/v to right side to prevent negative absorption, 
– -α/v term on right side is treated as a delta-function scatter

– Select a fixed value for α
– Solve the K-eigenvalue equations, with fixed time-absorption α/v
– Select a different α and solve for a new Keff
– Repeat, searching for value of  α which results in Keff = 1

 
L + T + α

v
⎡
⎣⎢

⎤
⎦⎥
Ψα (

r,E,

Ω) = S + 1

K
eff

M
⎡

⎣
⎢

⎤

⎦
⎥Ψα
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• K-eigenvalue solution

Loop for Power Iteration for K
• Loop over neutrons in cycle
• • neutron history
• • • •
• • •

• α-eigenvalue solution

Loop for α search iterations
• Loop for Power Iteration for K
• • Loop over neutrons in cycle
• • • neutron history
• • • • •
• • • •
• • •

➜ Find   K(α),   then  search for  α that gives  K(α)=1

Monte Carlo

Monte Carlo

K- and α-Eigenvalue Calculations
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K-Calculations

• Guess an initial source distribution
• Iterate until converged (How do you know ???)
• Then

– For Sn code:  done, print the results
– For Monte Carlo:  start tallies, 

keep running until uncertainties small enough

• Details?    Bias?   Statistics?  

Monte Carlo
Deterministic (Sn)

Discard Tallies

Keff
(n)

Iteration, n
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Monte Carlo Solution of Keff Problems

Note: batch = cycle = iteration = generation

• Initialize
– Assume a value for the initial Keff (usually, K0 = 1)
– Sample M fission sites from the initial source distribution

• For each cycle n,     n = 1 … N+D
– Follow histories for all source particles in cycle

• If fissions occur, bank the sites for use as source in next cycle
• Make tallies for Kcycle

(n) using path, collision, & absorption estimators
• If   n ≤ D,    discard any tallies
• If   n > D,    accumulate tallies

– Estimate Kcycle(n)

• Compute final results & statistics using last N cycles
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K-Calculations -- Power Iteration

• Power iteration procedure:

1.  Initial guess for Keff and 𝚿
Keff(0), 𝚿(0)

2. Solve for 𝚿 (n+1)   [Monte Carlo random walk for N particles]

3. Compute new Keff

4. Repeat 1-3 until both Keff(n+1) and 𝚿 (n+1) have converged

Ψ(n+1) = 1
Keff
(n) ⋅FΨ(n)

 
Keff
(n+1) = Keff

(n) ⋅
MΨ(n+1)d


r∫

MΨ(n)d

r∫

Source points
For 𝚿 (0)

Source points
For 𝚿 (n+1)
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K-Calculations -- Banking Fission Sites

• During a particle random walk,

= expected number of fission neutrons
created at collision point

• Averaged over all collisions for all histories, the expected value 
for   wgt · 𝝂ΣF / ΣT is   Keff.

• In order to bank approximately the same number of fission sites in 
each cycle,  the current value of Keff is used to bias the selection 
of fission sites at a collision:

  

� 

wgt ⋅ νΣF
ΣT

  

� 

R = wgt ⋅ νΣF
ΣT

⋅ 1
K
, n = R⎣ ⎦

If ξ < R− n, store n + 1 sites in bank with wg ′ t = K
Otherwise, store n sites in bank with wg ′ t = K
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K-Calculations -- Renormalization

• NJ = number of particles starting cycle J, 
N'J = number of particles created by fission in cycle J

(number of particles stored in fission bank)

– The expected value for N'J is:E[ N'J ]  =  Keff• NJ
– ( N'J/NJ )  is a single-cycle estimator for Keff

• To prevent the number of particles per cycle from growing 
exponentially (for K>1) or decreasing to 0 (for K<1), the particle 
population is renormalized at the end of each cycle:
– In some Monte Carlo codes,  the number of particles starting each cycle 

is a constant N.   Russian roulette or splitting are used to sample  N 
particles from the N' particles in the fission bank. (All particles in 
fission bank have a weight of 1.0)

– In other codes, the total weight W starting each cycle is constant.  The 
particle weights in the fission bank are renormalized so that the total 
weight is changed from W' to W. (Particles in fission bank have equal 
weights, but not necessarily 1.0)
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Single-cycle Keff Estimators

• Pathlength estimator for Keff

• Collision estimator for Keff

• Absorption estimator for Keff
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Kpath = wgt j ⋅dj ⋅
all

flights

∑ νΣF
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K-Calculations -- Bias

• The renormalization procedure used at the end of each cycle 
introduces a small bias into the computed Keff
– Renormalization involves multiplying particle weights by (W/W'), 

where   W = total weight starting a cycle,
W'= total weight at the end of a cycle.

– W' is a random variable, due to fluctuations in particle random walks.

• Theoretical analysis of the MC iteration process & propagation of 
history fluctuations gives    

– M = histories/cycle
– Bias in Keff ~  1/M

• Smaller M ➜ larger cycle correlation ➜ larger bias in Keff & source
• Larger M ➜ smaller cycle correlation ➜ smaller bias

[T Ueki, "Intergenerational Correlation in Monte Carlo K-Eigenvalue Calculations", Nucl. Sci. Eng. (2002)]

  

� 

bias in Keff = − σk
2

Keff
⋅

sum of correlation coeff's
between batch K's

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
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K-Calculations -- Bias

• For a simple Godiva reactor calculation: 

Keff vs 1/M

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

0 0.01 0.02 0.03 0.04 0.05 0.06

1/M

K
ef

f

Keff Linear (Keff)
M=10000

M=1000

M=100
M=50

M=25
M=20



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       228

K-Calculations -- Bias

• Observed PDF for single-cycle Keff,  for varying M

• Bias in Keff is negative:   Kcalc < Ktrue

• Bias is significant for  M < 10 particles/cycle
small for M ~ 100
negligible for M > 1000
0 for M → ∞ 

• Recommendation: Always use 10,000 or more particles/cycle

1000 particles/cycle

10 particles/cycle
Bias

Single-cycle Keff

fr
eq

ue
nc

y
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Power Iteration & Convergence

• Guess an initial source distribution
• Iterate until converged (How do you know ???)
• Then

– For Sn code:  done, print the results
– For Monte Carlo:  start tallies, 

keep running until uncertainties small enough

• Convergence?    Stationarity?

Monte Carlo
Deterministic (Sn)

Discard Tallies

Keff
(n)

Iteration, n
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K-eigenvalue equation

• Use operator (or matrix) form to simplify notation

where
L = leakage operator S = scatter-in operator
T = collision operator M = fission multiplication 

operator

• Rearrange

➜ This eigenvalue equation will be solved by power iteration

(L + T)Ψ = SΨ + 1
Keff
MΨ

(L + T − S)Ψ = 1
Keff
MΨ

Ψ = 1
Keff

⋅ (L + T − S)−1MΨ

Ψ = 1
Keff

⋅FΨ
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• Expand 𝚿 in terms of eigenfunctions uj(r,E,Ω)

• Expand the initial guess in terms of the eigenmodes

• Substitute the expansion for 𝚿(0) into power iteration equation

 

Ψ = aj

uj

j=0

∞

∑ = a0

u0 + a1


u1 + a2


u2 + a3


u3 + .....


uj

ukdV = δ jk∫ aj = Ψ ⋅


ujdV∫
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1
kj
F ⋅

uj k0 > k1 > k2 > ... k0 ≡ keffective

Power Iteration - Convergence
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Power Iteration - Convergence

• Because   k0 > k1 > k2 > …,    all of the red terms vanish as n→∞
– 𝚿(n+1)  ➜ constant ∙ u0
– K(n+1)  ➜ k0

• After the initial transient,  error in 𝚿(n) is dominated by first mode
– ( k1 / k0 )   is called the dominance ratio,  DR  or  ρ
– Errors in 𝚿 (n) die off as   ~ (DR)n

• For problems with a high dominance ratio (e.g.,  DR ~ .99),
the error in Keff may be small,  since the factor (k1/k0 - 1) is small.
– Keff may appear converged,  

even if the source distribution is not converged

 

Ψ(n+1) ≈ [cons tant] ⋅ u0  +   
a1(0)
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⎛
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Power Iteration - Convergence

• After n iterations,   Jth mode error component is reduced by the factor  ( kJ 
/ k0 )n

• Since    1  >   k1/k0 >   k2/k0 >   k3/k0 >  …,
after the initial transient,  error in 𝚿(n) is dominated by first mode:

• ( k1 / k0 )   is called the dominance ratio,  DR  or  ρ

– Errors die off as   ~ (DR)n

– To reduce 10% error à .1% error

DR~.9 à 44 iterations
DR~.99 à 458 iterations
DR~.999 à 2301 iterations

 
Ψ(n) ≈ [cons tant] i u0 +

a1(0)

a0(0)
⎛
⎝⎜

⎞
⎠⎟
⋅
k1
k0

⎛
⎝⎜

⎞
⎠⎟

n

⋅
u1 + ...

⎡

⎣
⎢
⎢

⎤
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⎥
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Initial guess
Exact solution
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Power Iteration - Convergence

Typical K-effective convergence patterns

• Higher mode error terms die out as  ( kJ / k0 )n,    for n iterations

• When initial guess is concentrated in center 
of reactor, initial Keff is too high
(underestimates leakage)

• When initial guess is uniformly distributed,
initial Keff is too low (overestimates leakage)

• The Sandwich Method uses 2  Keff calculations -
one starting too high & one starting too low.
Both calculations should converge to the same result.

K

Iteration, n

K

Iteration, n
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Power Iteration - Convergence

• Keff is an integral quantity - converges faster than source shape
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Power Iteration - Convergence

• For Monte Carlo power iteration,
statistical fluctuations in source shape die out gradually over a 
number of successive iterations. 
– Persistence of the noise over successive iterations gives correlation among 

source distributions in successive iterations.  (Positive correlation)

– Correlation directly affects confidence intervals:
Serial correlation in the source distribution è larger confidence intervals

➜ Most Monte Carlo codes ignore these correlation effects  
&  incorrectly   underestimate the confidence intervals

Noise (fluctuation)

Exact solution
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Power Iteration - Convergence

Summary

• Local errors in the source distribution decay as  ( kJ/k0 )n

– Higher eigenmodes die out rapidly, convergence dominated by k1/k0
– High DR ➜ slow convergence
– High DR ➜ large correlation ➜ large error in computed variances

• Errors in Keff decay as   (kJ/k0 – 1) * ( kJ/k0 )n

– High DR ➜ kJ/k0 ~ 1 ➜ small error

• Keff errors die out faster than local source errors
– Keff is an integral quantity - positive & negative fluctuations cancel

• High DR is common for
– Large reactors, with small leakage
– Heavy-water moderated or reflected reactors
– Loosely-coupled systems
➜ If local tallies are important (e.g., assembly power, pin power, …),

examine their convergence - not just Keff convergence
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Eigenvalue Calculations - II

• Stationarity Diagnostics

• Wielandt & Superhistory Methods
• Dominance Ratio 
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Keff Calculations

• Plots of single-cycle Keff or cumulative Keff are sometimes difficult to 
interpret when assessing convergence
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Introduction
• Monte Carlo codes use power iteration to solve for Keff & 𝚿 for eigenvalue 

problems

L = loss to leakage S = gain from scatter-in
T = loss to collisions M = gain from fission multiplication

• Power iteration convergence is well-understood

– First-harmonic source errors die out as  ρn,     ρ = k1 / k0 <  1
– First-harmonic Keff errors die out as ρn-1 (1- ρ)
– Source converges slower than Keff

• Most codes only provide tools for assessing Keff convergence.

➜ MCNP5 also looks at Shannon entropy of the source distribution, Hsrc.

(L + T − S)Ψ(n) = 1
K(n−1) MΨ(n−1)

 

Ψ (n ) (

r )  =  


u0 (

r )   +   a1 ⋅ ρ

n ⋅

u1(

r )   +   ...

     keff
(n )   =  k0 ⋅ 1  −  ρ

n−1(1− ρ) ⋅g1  +  ...⎡⎣ ⎤⎦
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Source Convergence
&

Shannon Entropy
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Keff Calculations

• Initial cycles of a Monte Carlo K-effective calculation should be 
discarded, to avoid contaminating results with errors from initial guess
– How many cycles should be discarded?
– How do you know if you discarded enough cycles?

• Analysis of the power iteration method shows that Keff is not a reliable 
indicator of convergence -- Keff can converge faster than the source 
shape

• Based on concepts from information theory,
Shannon entropy of the source distribution is useful for 
characterizing the convergence of the source distribution

Discard Tallies

Keff
(n)

Iteration, n
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Keff Calculations - Stationarity Diagnostics

• Divide the fissionable regions of the problem into  NS spatial bins
– Spatial bins should be consistent with problem symmetry
– Typical choices: -- 1 bin for each assembly

-- regular grid superimposed on core 

– Rule-of-thumb for number of spatial bins:
NS ~   (histories/batch) / 25    or   less

Why?
• Would like to have >25 fission source sites per bin to get good statistics
• If source distribution were uniform,   ~25 sites would be in each bin

• Shannon entropy of the source distribution

H(S) = − pJ ⋅ ln2(pJ ), where pJ =
(# source particles in bin J)

(total # source particles in all bins)J=1

NS

∑
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Keff Calculations - Stationarity Diagnostics

• Shannon entropy of the source distribution

– 0  ≤  H(S) ≤  ln2( NS )

– Note that   pJ ln2(pJ) = 0   if pJ=0

– For a uniform source distribution,   H(S) = ln2( NS )
– For a point source (in a single bin),  H(S) = 0
– For any general source, 0  ≤  H(S) ≤   ln2( NS )

• H(S(n)) provides a single number to characterize 
the source distribution for iteration n (no physics!)

➜ As the source distribution converges in 3D space,
a line plot of H(S(n)) vs. n (the iteration number) converge

H(S) = − pJ ⋅ ln2(pJ ), where pJ =
(# source particles in bin J)

(total # source particles in all bins)J=1

NS

∑
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Criticality Calculations - Convergence

• Reactor core  (Problem inp24)  

K(n) vs cycle

H( fission source )

Keff

20

80

DR = .98
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Criticality Calculations - Convergence

• PWR 1/4-Core    (Napolitano)

K(n) vs cycle

H( fission source )

25

50

DR = .95



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       247

Criticality Calculations - Convergence

• 2D PWR (Ueki)
K(n) vs cycle

H( fission source )

25

50
DR = .97
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Criticality Calculations - Convergence

• Loosely-coupled array of spheres  (Problem test4s)

K(n) vs cycle

H( fission source )

Keff

75

85DR = .91
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Criticality Calculations - Convergence

• Fuel Storage Vault  (Problem  OECD_bench1)

K(n) vs cycle

H( fission source )

20 ?

2000
DR = .99+

K(n) vs cycle

H( fission source )
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Hsrc Convergence vs Number of Spatial Bins

• For large number of bins, Hsrc approaches uniform upper limit 

• Use 10s or 100s of bins,  not 1000s or more 

100 bins

1000 bins

10000 bins

OECD bench3
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Hsrc and 2D vs 3D Spatial Bins 

• For 3D problems,  using a 2D bin layout for Hsrc may incorrectly 
assess convergence

• Important to use 3D bin layout for 3D problems

2D bin layout

3D bin layout

inp24, 3D 1/4 core PWR
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Hsrc Convergence  vs  Neutrons per Cycle

• Problems converge at the same rate, for any number of 
neutrons/cycle.   (The rate depends on dominance ratio, ie, 
physics & geom)

• More neutrons/cycle does not make problems converge faster

• More neutrons/cycle è less noise in convergence plots

Shannon Entropy
Of the Fission Source

for different neutrons / cycle

1000 - black
5000 - blue

20000 - red
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Conclusions - Hsrc

• Shannon entropy is a highly effective means of characterizing 
convergence of the fission distribution

• If you are computing more than just Keff (eg, local reaction rates, 
dose fields, fission distributions, heating distributions, etc.):

Should check both keff and  Hsrc for convergence 

• MCNP6 will compute & plot  Hsrc as an important new tool for 
assessing problem convergence. 

• The recommended MCNP6 procedures for defining spatial tally 
bins and computing Hsrc are effective for a variety of typical 
criticality problems.
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Wielandt
Acceleration

(For future versions of MCNP)
Inspired by:     T. Yamamoto & Y. Miyoshi, J. Nucl. Sci. Technol. 41, No 2, 99-107 (2004)
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Wielandt Method

• Basic transport equation for static eigenvalue problems

L = loss to leakage S = gain from scatter-in
T = loss to collisions M = gain from fission multiplication

• Define a fixed parameter   ke such that    ke > k0    (k0 = exact 
eigenvalue)

ke =   k0 +  Δ, Δ > 0

• Subtract                from each side of the transport equation

• Solve the modified transport equation by power iteration

(L + T − S)Ψ = 1
Keff
MΨ

1
ke
MΨ

(L + T − S − 1
ke
M)Ψ(n) = ( 1

Keff
(n−1) − 1

ke
)MΨ(n−1)
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Wielandt Method

• Power iteration for modified transport equation

• How to choose ke
– ke  must be larger than k0       (but, don't know k0!) 
– ke must be held constant for all of the histories in a batch, 

but can be adjusted between batches
• Typically, guess a large initial value for ke,  such as  ke=5  or  ke=2
• Run a few batches, keeping ke fixed, to get an initial estimate of Keff
• Adjust ke to a value slightly larger than the estimated Keff
• Run more batches, possibly adjusting ke if the estimated Keff changes

 

(L + T − S − 1
ke M)Ψ

(n+1) = ( 1
Keff
(n) − 1

ke )MΨ(n)

Ψ(n+1) = ( 1
Keff
(n) − 1

ke ) ⋅ (L + T − S − 1
ke M)

−1MΨ(n)

Ψ(n+1) = 1
K(n) ⋅
FΨ(n)

where K(n) = ( 1
Keff
(n) − 1

ke )
−1 or Keff

(n) = ( 1
K(n) +

1
ke )

−1



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       258

Wielandt Method

• Convergence
– Eigenfunctions for the Wielandt method are same as for basic power iteration
– Eigenvalues are shifted:

– Expand the initial guess, substitute into Wielandt method, rearrange to:

– Additional factor   (ke-k0)/(ke-k1) is less than 1 and positive, so that the red terms 
die out faster than for standard power iteration

 

Ψ(n+1) ≈ [cons tant] ⋅ u0  +   
a1(0)

a0(0)
⎛
⎝⎜

⎞
⎠⎟
⋅
ke − k0
ke − k1

⋅
k1
k0

⎛
⎝⎜

⎞
⎠⎟

n+1

⋅
u1   +  ...

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

K(n+1) ≈ k0 ⋅ 1  +  
a1(0)

a0(0)
⎛
⎝⎜

⎞
⎠⎟
⋅
ke − k0
ke − k1

⋅
k1
k0

⎛
⎝⎜

⎞
⎠⎟

n

⋅
ke − k0
ke − k1

⋅
k1
k0

−1
⎛
⎝⎜

⎞
⎠⎟
⋅G1  +  ...

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 
kJ = 1

kJ
− 1

ke
⎡⎣ ⎤⎦

−1
ke > k0 > k1 > ...
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Convergence

• Eigenfunctions for Wielandt method are same as for 
basic power iteration, but the eigenvalues are shifted

• The dominance ratio for Wielandt method is always 
smaller than for power iteration

➜ Wielandt method will converge in fewer iterations

ρWielandt =
ke − k0
ke − k1

⋅ρPower ρ= k1
k0

< 1, ke > k0 > k1 > ...

Standard power iteration

K(n)

Iteration, n
Power iteration with Wielandt acceleration
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Monte Carlo Interpretation

• Power iteration with Wielandt acceleration

• During neutron random walk,  at each collision in fissile material:

Create these neutrons Save these neutrons as the
in the current iteration source for the next iteration

(L + T − S − 1
ke
M)Ψ(n) = ( 1

Keff
(n−1) − 1

ke
)MΨ(n−1)

Fission neutron source
from previous iteration

Fission neutrons to follow
in current iteration

′ne = wgt ⋅ νΣF

ΣT

⋅ 1
ke

+ ξ
⎢

⎣
⎢

⎥

⎦
⎥ ′nF = wgt ⋅ νΣF

ΣT

⋅ 1
K(n−1) −

1
ke

⎛
⎝⎜

⎞
⎠⎟
+ ξ

⎢

⎣
⎢

⎥

⎦
⎥
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Generations vs Iterations
• Power method: one neutron generation per iteration

• Wielandt method: multiple neutron generations per iteration,
varies for each starting neutron

Standard power iteration
(generation model)

Wielandt iteration
(chain model)
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Choosing   ke = k +  Δ

• In MCNP, the collision estimator is used for keff(n-1), so that

ke(n) =   kcol(n-1) +  Δ

• For cycle n, average number of fission generations per source neutron

For k ~ 1: ∆ = ∞,  L = 1 ∆ = .5,  L = 3 ∆ = .05,  L = 21
∆ = 1,  L = 2 ∆ = .1,   L = 11 ∆ = .01,   L = 101

Typical: ∆ = .1,    .05,   or   .025

Smaller ∆ ➜ larger average chain length, L  
➜ more spread in fission sites each cycle
➜ faster convergence

Cycle n
L = 1 + k/∆

Neutron generations
1 neutron 1 neutron
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Numerical Testing
2D whole-core PWR test problem (Ueki)

– Ran with different  shifts, Δ:
∞,   1.0,   0.5,   0.2,   0.1

– Examined convergence of source 
entropy, Hsrc vs Δ(plots next page)

– Examined FOM = 1 / σ2T   vs Δ

Δ FOM
∞ 168 K

1.0 188 K
0.5 212 K
0.2 188 K
0.1 184 K

For this problem, FOM was about 
the same for a range of Δ's

DR = .97
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Numerical Testing

2D PWR test problem

– Wielandt shift parameter: Ke
(n) =   K(n-1)

collision +  Δ

Convergence of Hsrc vs Δ Iterations for convergence vs
Δ

 

Δ = ∞  -- black
Δ = 1  -- red
Δ = .1 -- blue
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Numerical Testing

• Fuel Storage Vault  (Problem  OECD_bench1)

DR = .99+
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Wielandt Method - Summary
• Wielandt Method:

– Faster convergence rate than power iteration ➜ fewer iterations

– Some of the particle random walks are moved from the next generation 
into the current generation ➜ more work per iteration

– Same total number of random walks ➜ no reduction in CPU time

• Advantages

– Reduced chance of false convergence for very slowly converging 
problems

– Reduced inter-generation correlation effects on variance

– Fission source distribution spreads more widely in a generation (due to 
the additional particle random walks), which should result in more 
interactions for loosely-coupled problems

➜ Wielandt method will be included in future versions of MCNP
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Superhistory Method

• Standard generation model, solved by power iteration

• Superhistory method
– Follow several generations (L) before recomputing Keff and 

renormalizing

• Convergence
– Same eigenfunctions as standard power iteration
– Eigenvalues are   k0

L,   k1
L,  k2

L, …
– DR' = DRL,   where DR = dominance ratio for power iteration
– Fewer iterations, but L generations per iteration ➜ same work as power 

iteration
– Same convergence rate as power iteration

• Advantages
– Reduced correlation between iterations
– Fewer renormalizations 

Ψ(n+1) = 1
Keff
(n) ⋅FΨ(n)

 Ψ
(n+1) = 1

K(n) ⋅
FΨ(n), with   F = FL, K(n) = (Keff

(n) )L
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Superhistory Method

• Superhistory Method for Monte Carlo k-effective calculation 

Initial
Guess

Batch 1
Keff(1)

Batch 2
Keff(4)

Batch 1
Source

Batch 2
Source

Batch 3
Source

Source particle generation
Monte Carlo random walk

Neutron

Example with  L = 2  generations/batch
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Dominance Ratio
Calculations

(For future versions of MCNP5)
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DR - Overview

• Time-series methods for computing DR
– Ueki developed a method

T. Ueki, F.B. Brown, D.K. Parsons, and D.E. Kornreich, “Autocorrelation and Dominance Ratio in Monte Carlo 
Criticality Calculations,” Nuclear Science and Engineering, 145, 279-290 (2003)

– Recent extensions by Nease & Ueki provide a practical method
B.R. Nease and T. Ueki, “Time Series Analysis of Monte Carlo Fission Sources – III: Coarse Mesh Projection,”
Nuclear Science and Engineering, 157, 51-64 (2007)

– Recent work by Nease & Brown for MCNP5 
B. Nease & F. Brown, “Implementing the Coarse Mesh Method into  MCNP for Dominance Ratio Calculation”, 
LA-UR-07-5462 (2007) 

– Accurate, regardless of mesh used for collecting statistics
– Can be used only after source has converged

• Fission Matrix method
– Fij=prob fission in cell j, given fission in cell I
– Tally Fij,  then find eigenvalues & eigenvectors of F
– Very old - used by dozens of researchers

G. W. Morrison, J. T. Mihalczo, & D. C. Irving, “REACT and CONVERG Fortran Subroutines for Determining 
Source Convergence for the O5R Monte Carlo Neutron Transport Code”, ORNL-TM-1325, (1966) 

– Approximate, results are very sensitive to mesh
– Can be used before source has converged

 

S = 1

k F ⋅

S
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Comparison of Methods

• Fission matrix method:
– Accurate only for fine mesh,  large number of mesh cells, N
– Fission matrix storage varies as N2

10 x 10 x 10 mesh  - pretty coarse, but requires 106 storage 
locations

– Need to find eigenvalues/vectors of nonsymmetric NxN matrix

• Godiva problem example
– Fission matrix

mesh size F-matrix size DR

2 x 2 x 2 8 x 8 .560
4 x 4 x 4 64 x 64 .602
8 x 8 x 8 512 x 512 .646

– Coarse Mesh & time series: .677 +- .033
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Example

• From Nease & Ueki (NSE, Sept 2007)
– 1-group, 2D problem
– DR from previous work (Ueki) = .9993 +- .0004
– DR fission matrix using  (4x4x1)2 = .988

using  (9x9x1)2 = .993
using  (18x18x1)2 = .997

– DR using CMM + time series method = .998   +- .002
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MCNP5 Implementation

• Both methods for DR computation were added to test version of 
MCNP5

• Negligible extra CPU time for either method

• Fission matrix DR
– Can be determined early, before convergence
– Sensitive to mesh size
– Provides approximate DR
– Useful for characterizing problem convergence
– May be useful for automated convergence tests

• Coarse Mesh Method with time series analysis for DR
– Can only be used after convergence
– Independent of mesh size
– Provides accurate DR
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Conclusions

• Shannon entropy of the fission distribution is a highly effective 
means of characterizing convergence of the fission distribution
– MCNP5 (version 1.40) computes & plots Shannon entropy as an 

important new tool for assessing problem convergence. 
– It is highly recommended that both keff and Hsrc be carefully checked for 

convergence in all Monte Carlo criticality calculations. 

• Wielandt's method improves convergence & reduces inter-cycle 
correlation, without significant changes in CPU time
– Helps to prevent false convergence assessment
– Eliminates nonconservative underprediction of confidence intervals

• Can now reliably calculate the dominance ratio using Monte Carlo
– Fission matrix for early, approximate DR
– Coarse-mesh method with time-series for later, accurate DR
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Eigenvalue Calculations – III
Case Studies

F.B. Brown, "Keff of the World” & Other Concerns for Monte Carlo Eigenvalue Calculations”,  
SNA+MC 2010 conference, Tokyo, 17-21 Oct [also LA-UR-10-06874] (2010)
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Concerns for MC Eigenvalue Calculations

• Monte Carlo Criticality Calculations
– Methodology
– Concerns

• Numerical Results
– Keff of the World Problem
– 1/4-Core PWR Problem
– Criticality Safety Problem

• Best Practices
– Discussion
– Conclusions
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MC Criticality Calculations
-

Methodology  &  Concerns
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Introduction

• Several fundamental problems with MC criticality calculations 
were identified in the 1960s - 1980s:
– Convergence of Keff & source distribution
– Bias in Keff & tallies
– Underprediction bias in tally statistics

(see Lieberoth, Gelbard & Prael, Gast & Candelore, Brissenden & Garlick)

• These problems are well-understood & can be readily avoided, if 
some simple "best practices" guidelines are followed

• Previous discussion of details:
– 2008 - PHYSOR - Monte Carlo workshop
– 2009 - M&C - Monte Carlo workshop
– 2009 - NCSD - ‘Best Practices’ paper
– 2010 - PHYSOR - Monte Carlo workshop

Presentations available at   
http://mcnp.lanl.gov/publication/mcnp_publications.html
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Concerns

Monte Carlo
Deterministic (Sn)

Convergence of Keff
& fission distribution

Bias in average
Keff & tallies

Bias in statistics
for tallies

Tallies

Keff
(n)

Iteration, n

Initial
Guess

Generation 1
Keff(1)

Generation 2
Keff(2)

Generation 3
Keff(3)

Generation 4
Keff(4)

Power Iteration for MC Criticality Calculations



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       283

Convergence
• Monte Carlo codes use power iteration to solve for Keff & 𝚿 for 

eigenvalue problems

• Power iteration convergence is well-understood:
n = cycle number, k0,u0 - fundamental, k1,u1 - 1st higher mode

– First-harmonic source errors die out as  ρn,     ρ = k1 / k0 <  1
– First-harmonic Keff errors die out as ρn-1 (1- ρ)
– Source converges slower than Keff

• Most codes only provide tools for assessing Keff convergence.

➜ MCNP5 also looks at Shannon entropy of the source distribution, Hsrc.

 

Ψ (n ) (

r )  =  


u0 (

r )   +   a1 ⋅ ρ

n ⋅

u1(

r )   +   ...

     keff
(n )   =  k0 ⋅ 1  −  ρ

n−1(1− ρ) ⋅g1  +  ...⎡⎣ ⎤⎦



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       284

Bias in Keff & Tallies

• Power iteration is used for Monte Carlo Keff calculations

– For one cycle (iteration):
• M0 neutrons start
• M1 neutrons produced, E[ M1 ] = Keff ∙ M0

– At end of each cycle, must renormalize by factor   M0 / M1

– Dividing by stochastic quantity (M1)  introduces bias in Keff & tallies

• Bias in Keff, due to renormalization

M = neutrons / cycle

– Power & other tally distributions are also biased, produces “tilt”

Bias inKeff   ∝  
1
M
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• MC eigenvalue calculations are solved by power iteration

– Tallies for one generation 
are spatially correlated
with tallies in successive 
generations

– The correlation is positive

– MCNP & other MC codes ignore this correlation, so
computed statistics are smaller than the real statistics

– Errors in statistics are small/negligible for Keff, 
may be significant for local tallies (eg, fission distribution)

– Running  more cycles  or  more neutrons/cycle  does not reduce the 
underprediction bias in statistics

– (True σ2) > (computed σ2),   since correlations are positive

Bias  in Statistics

1st  generation
2nd generation
3rd  generation

 

True σX
2

Computed σX
2 =

σX
2

σX
2 ≈ 1 + 2 ⋅

sum of lag-i correlation
coeff's between tallies

⎛
⎝⎜

⎞
⎠⎟
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Numerical Results
-

Keff of the World Problem
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Introduction

Elliot Whitesides, 1971:

… if one attempts to calculate the keff of the world using a Monte 
Carlo calculation, what keff would be computed assuming that 
there are several critical assemblies located around the world? 

The answer would likely be the keff of the world with no critical 
assemblies present.  …

… The erroneous results for these types of problems are the result 
of the failure of the calculation to converge the source to the 
fundamental source mode.  …

… unless the correct fission distribution is achieved, the results will 
most likely be nonconservative.
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Whitesides' Model Problem
• MCNP5-1.60  +  ENDF/B-VII.0 data

• For uniform array of identical spheres 
with surrounding water, sphere radii 
adjusted to  r = 3.9 cm,  so that 

Keff =  .9328 ± .0002

• Single bare sphere, r=4.928 cm,

Keff = 1.0001 ± .0002

• Whitesides' model problem:

Replace center sphere of array 
by larger (critical) sphere

Should be supercritical - is it ?

9 x 9 x 9 array of Pu-239 spheres
• 729 spheres
• Void between spheres
• Surrounded by 30 cm water
• Sphere radii ~ 4 cm
• Pitch = 60 cm
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Whitesides' Problem, circa 1971

• Due to severe computer limitations ~1971, KENO defaults were:
– 300 neutrons/cycle
– Discard first 3 cycles
– Run 100 more cycles

• If  MCNP5  is run using the 1971 KENO defaults, 
200 independent replica calculations give:
– Average of 200 replicas: Keff = .9431 ± .0010
– None of the 200 calculations produced  Keff > 1
– Distribution of replica results:

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Keff

freq( Keff )

.9431 ± .0010
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M = 10,000

M = 5,000

M = 1,000

M = 500

100 200

Keff vs cycle, various M
M = neutrons/cycle 

Initial source guess  =  uniform sampling of points at sphere centers 

Convergence

Keff converges in 
75-100 cycles

Hsrc converges in 
100-150 cycles

Must discard 150 
or more initial 
cycles

Convergence 
depends on the 
dominance ratio & 
source guess, NOT 
on neutrons/cycle

M = 10,000

M = 5,000

M = 1,000

M = 500

100 200

Hsrc vs cycle, various M
M = neutrons/cycle 
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Keff vs  1/M

M = neutrons/cycle

Historical note:
When this problem was first proposed in 1971, 
the default batch size for KENO was 300 neutrons/cycle

Notes:
• All cases discarded the first 150 cycles
• All cases used 10M neutrons in active cycles
• All cases:   σ ~  .00025,  smaller than plot markers 

Keff Bias

.0156 Δk
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Keff Bias
Distribution of Keff for 200 replicas,  various  M = neuts/cycle
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M=10K

Fr
eq

ue
nc

y 
of

 K
ef

f, 
fo

r r
ep

lic
as

Keff



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       293

Discussion & Conclusions

• The original 1971 version suffered from:

– Computers: small memory & slow

– Discard only 3 cycles: not converged

– 300 neutrons/cycle: Keff bias  - too low,  nonconservative

– 300 neutrons/cycle: undersampled the source (729 spheres)

– No tools were available for diagnosing fission distribution convergence 
(today, we have Shannon entropy & other diagnostics)

• If (1)  enough initial cycles are discarded (150 or more),  and 
(2)  enough neutrons/cycle are used (10K or more),

then the  "K-effective of the World" problem is actually not a 
difficult problem to solve
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Numerical Results
-

1/4-Core PWR
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Example Problem - Reactor

2D quarter-core PWR (Nakagawa & Mori model)

• 48 1/4  fuel assemblies:
– 12,738 fuel pins with cladding
– 1206 1/4  water tubes for

control rods or detectors

• Each assembly:
– Explicit fuel pins & rod channels
– 17x17 lattice 
– Enrichments:    2.1%,  2.6%,  3.1%

• Dominance ratio  ~  .96

• 125 M active neutrons for each calculation
• ENDF/B-VII data, continuous-energy
• Tally fission rates in each quarter-assembly
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Convergence

---- keff ,   initial source in center of center     1/4 assy
---- keff ,   initial source in center of diagonal 1/4 assys
---- keff ,   initial source uniform  in core region

---- Hsrc ,  initial source in center of center     1/4 assy
---- Hsrc ,  initial source in center of diagonal 1/4 assys
---- Hsrc ,  initial source  uniform in core region

Keff converges sooner than 
the fission distribution

Hsrc = 
• Shannon entropy of      
fission source distribution
• A metric for assessing 
convergence of the 
distribution
• Computed/plotted by 
MCNP
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Bias in Keff

.0003 Δk

N = # cycles
M = neutrons/cycle
N·M = constant for all calculations



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       298

Bias in Tallies

Percent errors in 
1/4-assembly fission rates 
using 500 neutrons/cycle

Reference:   ensemble-average of 25 independent calculations,  
with 25 M  neutrons each & 20K neutrons/cycle

Errors  of  -1.7% to +3.2% 

Statistics ~ .1% to .3%
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Bias in Tallies

Percent error in fission rates along diagonal
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Bias  in  σ's

True relative errors in
1/4-assembly fission rates, 
as multiples of calculated 
relative errors, σTRUE / σMCNP

Calculated uncertainties
are 1.7 to 4.7 times smaller 
than true uncertainties
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Numerical Results
-

Crit-Safety Problem
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2 x 3 array of steel cans containing 
plutonium nitrate solution

From MCNP Criticality Primer (chap 5) & MCNP Criticality Classes

Example Problem - Criticality Safety
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Convergence

---- keff ,   initial source in center of solution in   1 can
---- keff ,   initial source in center of solution in all cans
---- keff ,   initial source uniform  in solution in all cans

---- Hsrc ,  initial source in center of solution in   1 can
---- Hsrc ,  initial source in center of solution in all cans
---- Hsrc ,  initial source  uniform in solution in all cans

Using ENDF/B-VI+T16 data
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Bias in Keff

Note: Bias in green point is a convergence problem
due to using Keno default - discard 3 cycles, 203 cycles total

M = 100M = 200

M = 500

M = 1000

M = 20000, 10000, 5000

M = 1000
203 cycles
Discard 3 cycles

M = neutrons/cycle
discard 50 cycles
10M neutrons in active cycles

.002  Δk

Using ENDF/B-VI+T16 data
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Best Practices For
MC Criticality Problems
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Convergence  - Guidance
• Plot   Keff vs cycle to check convergence of  Keff

• If computing any tallies (flux, fissions, dose, foils, heating, …)
plot   Hsrc vs cycle to check convergence of fission distribution

• Dominance ratio   ρ = k1 / k0 determines the rate of convergence
– Smaller dominance ratio ➜ fewer cycles to converge

– To reduce the dominance ratio, use problem symmetry & reflecting 
boundary,  to eliminate some higher modes

PWR example: full core 1/2 core 1/4 core 1/8 core
ρ: .98 .97 .96 .94

• Better initial source guess ➜ fewer cycles to converge

– Reactor: good guess - uniform in core region

– Criticality Safety: good guess - points   in each fissionable region,
good guess - uniform in each fissionable region

• Convergence does not depend on number of neutrons/cycle (M)
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Bias in Keff & Tallies  - Guidance

• Using too few neutrons/cycle leads to bias in Keff & the fission 
distribution 

• Bias in Keff is usually small, but always negative (nonconservative)

• Bias in the fission distribution is generally larger than for Keff
& shows a significant tilt

• Practical solution - use large M  (neutrons/cycle)

– Using  10K neutrons/cycle  or  more  ➜ bias negligible
(100K or more for large models)

– More neutrons/cycle  ➜ more efficient parallel calculations



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       308

Bias  in  σ’s - Guidance

• Uncertainties computed by MC codes exhibit a bias 
due to inter-cycle correlation effects that are neglected

• Primarily affects local tally statistics,  not K-effective statistics

• Computed uncertainties are always smaller than 
the true uncertainties for a tally

• Running   more cycles   or   more neutrons/cycle    does not
reduce the biases

• Wielandt’s method can reduce or eliminate the underprediction 
bias in uncertainties    (coming soon in MCNP5…)
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Best Practices - Summary

• To avoid bias in Keff & tally distributions: 
- Use 10K or more neutrons/cycle      (maybe 100K+ for full-core)
- Discard sufficient initial cycles
- Always check convergence of both Keff & the fission distribution

• To help with convergence:
- Take advantage of problem symmetry, if possible
- Use good initial source guess, cover fissionable regions

• Run at least a few 100 active cycles 
to allow codes to compute reliable statistics

• Statistics on tallies from codes are underestimated, often by 2-5x;  
possibly make multiple independent runs
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Variance
Reduction
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Monte Carlo Calculations

• Variance reduction
– Modify the PDFs for physics interactions to favor events of interest
– Use splitting/rouletting to increase particles in certain geometric regions
– Kill particles in uninteresting parts of problem

• May be necessary in order to sample rare events
• More samples (with less weight each) ➜ smaller variance in tallies

Physics
• How far to collision?     
• Which nuclide?
• New E, direction?
• Secondaries?
• Survival?

Tallies
• Tally events of interest
• Compute results
• Compute statistics
• Balances
• Performance stats

Geometry
• Which cell is particle in?
• What will it hit next?
• How far to boundary?
• What’s on other side?
• Survival?

mcnp, rcp, vim, racer, sam-ce, tart, morse, keno, tripoli, mcbend, monk, o5r, recap, andy,…..
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Monte Carlo Estimates of Integrals

Given a function R(x), where x is a random variable with PDF f(x),

– Expected value of R(x) is
– Variance of R(x) is

Monte Carlo method for estimating  μ = <R>
– make  N  random samples       from f(x)
– Then

µ = R(x) f(x) dx∫

  

� 

R ≈ 1
N

R(ˆ x j)
j= 1

N

∑

σR 
2 ≈ 1

N−1 ⋅
1
N R2 (ˆ x j) − R 2

j= 1

N

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

  

� 

ˆ x j

  

� 

σ 2 = R2 (x) f(x) dx − µ 2∫
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Variance Reduction - Basic Idea

  

� 

σ 2 = R(x)[ ] 2 f(x) dx − µ 2∫

  

� 

µ = R(x) f(x) dx∫ = R(x) f(x)
g(x)
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ∫ ⋅g(x)dx

•Sample x' from f(x)
•Tally  R(x')

•Sample x' from g(x)
•Tally  R(x') • f(x')/g(x')

•Expected mean score is not changed by variance reduction

•Variance is changed due to altered sampling scheme

  

� 

σ 2 = R(x) f(x)
g(x)

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

2

g(x) dx − µ 2∫

Goal: Choose g(x) such that variance is reduced 
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Review

• Given a set of random samples,   x1, x2, …, xN,
– Mean 

– Variance of the mean

– Relative Error

– Figure of Merit

• Variance reduction:   Reduce RE or T, to increase FOM

  

� 

x = 1
N

xj
j= 1

N

∑

  

� 

σ x 
2 = 1

N− 1
⋅ 1

N
xj

2

j= 1

N

∑ − x 2
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

  

� 

RE = σ x 

x 

FOM = 1
RE2 ⋅T
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Analog vs. Weighted Monte Carlo

• Analog Monte Carlo
– Faithful simulation of particle histories
– No alteration of PDFs  (i.e., no biasing or variance reduction)
– Particle is born with weight = 1.0
– Weight unchanged throughout history until particle is killed
– Scores are weighted by 1.0 when tallying events of interest

• Weighted Monte Carlo  (non-analog)
– Alter the PDFs to favor events of interest
– Particle is born with weight = 1.0
– Weight, wgt,  is altered if biased PDF is used
– Weight can also be changed by Russian roulette/splitting & other 

variance reduction techniques
– Scores are weighted by  wgt  when tallying events of interest
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Variance Reduction - General Approaches

• Truncation
– Remove particles from parts of phase space that do not 

contribute significantly to the tallies

• Population control
– Use particle splitting and Russian rouletting to control the 

number of samples taken in various regions of phase space

• Modified sampling
– Modify the PDFs representing problem physics, to favor tallies 

of interest

• Deterministic methods
– Replace portions of a particle random walk by the expected 

results obtained from a deterministic calculation
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Typical Variance Reduction  Techniques

• MCNP has 14 variance reduction techniques
1. Time and energy cutoffs
2. Geometry splitting & roulette
3. Weight windows
4. Exponential transform
5. Forced collisions
6. Energy splitting & roulette
7. Time splitting & roulette
8. Point and ring detectors
9. DXTRAN
10. Implicit capture
11. Weight cutoff
12. General source biasing
13. Secondary particle biasing
14. Bremsstrahlung energy biasing
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Survival Biasing

• Also called implicit absorption or non-absorption weighting

• Modify collision process according to expected outcome

• Particle always survives collision
– Tally expected absorption, wgt • (ΣA/ΣT)
– Reduce weight of surviving particle, wgt' = wgt • (1 - ΣA/ΣT )

• Extends particle history so that more particles reach events which occur 
after many collisions

• Most effective for thermal reactor problems, but doesn't hurt in other 
types of problems

• Must also use some form of low-weight cutoff to eliminate particles with 
very low weight
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Geometry Splitting & Russian Roulette

• Increase the number of particles in "important" regions, decrease the 
number of particles in "unimportant" regions

• Assign each cell an importance, Icell
– Arbitrary,  use best guess or adjoint fluxes from deterministic 

calculation
– Could use one value for all energies or separate values for 

different energy ranges
– Higher value --> more important
– Icell > 0
– Icell=0 is a way to declare regions as not in physical problem
– Values of Icell must not change during Monte Carlo calculation

• Modify random walk simulation at surface crossings:
– If  (Ienter/Ileave) > 1,   perform splitting
– If  (Ienter/Ileave) < 1,   perform Russian roulette
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Geometry Splitting & Russian Roulette

• Let r  =  IB / IA
n  =  floor( r )

• If   n > 1,   split into n particles with weight  (wgt/n)
– All of the n  particles emerging from splitting have identical 

attributes (e.g., x,y,z, u,v,w, E) including     wgt' = wgt/n
– All of the n  particles from a splitting are part of the same 

history, and their tallies must be combined
– Typically, (n-1) particles are banked, 1 particle is followed until 

its death, then a particle is removed from the bank & followed, 
etc.

• Avoid over-splitting
– Splitting into a large number of particles can increase CPU-time 

& lead to (apparent) bias in results
– Typically, choose cell importances to split 2-for-1 or 3-for-1 
– Typically, can limit the splitting to  n-for-1  or less

• Total particle weight is exactly conserved in splitting

Cell A
IA

Cell B
IB

IB > IA
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Geometry Splitting & Russian Roulette

• Let r  =  IB / IA

• If   r < 1,   play Russian roulette
– With probability  r,  keep the particle & alter its weight to  (wgt/r)
– With probability (1-r), kill the particle (set its weight to 0)

if  ξ < r, 
wgt' = wgt/r

else
wgt' = 0

• Russian roulette effectively merges a number of low-weight particles into 
one with higher weight

• Total particle weight is only conserved statistically (expected value)

Cell A
IA

Cell B
IB

IB < IA

?
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Weight Cutoff

• Specify a cutoff weight, Wlow,
and a survival weight, Wave

• If particle weight drops below
Wlow, play Russian roulette with
weight of Wave for survivors
– Probability of surviving RR =  wgt/Wave
– Probability of being killed  =  1 - wgt/Wave

If   wgt < Wlow,

if   ξ < wgt/Wave,
wgt' = Wave

else
wgt' = 0

• Expected value of surviving weight is conserved, (wgt/Wave)∙Wave

Wave

Wlow

Particle
Weight

Set wgt to Wave
Or kill   ??
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Weight Cutoff

• In some codes (e.g., MCNP), the weight cutoff parameters are functions of 
cell importance

– Let      Rj = (importance of source cell) / (importance of cell j)

– Then, Wave(j)  =  Wave • Rj
Wlow(j)  =  Wlow • Rj

• Weight cutoffs reduce computing time,  not variance 

• Weight cutoffs can be applied anytime the particle weight changes - after 
collisions,  after boundary crossings, …
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Weight Windows

• Prevent particle weights from getting too large or too small
– Weight too large ➜ splitting
– Weight too small ➜ Russian Roulette
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Weight Windows

• Large fluctuations in particle weights contributing to a tally lead to larger 
variance

• Weight windows eliminate large or small weights (outside the window) by 
creating or destroying particles

• Weight windows can be applied any time - after collisions, after surface 
crossings, …

If    wgt > Whi
splitting

Elseif    wgt < Wlow
roulette
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Weight Windows

• MCNP weight window scheme
Input:   Wlow for each cell (can be energy or time dependent),

[Wave/Wlow],    [Whi/Wlow],    mxspln

If    wgt > Whi
n = min(  mxspln,  1 + wgt/Whi )  <-- max splitting is mxspln-to-1
wgt = wgt/n
bank n-1 copies of particle <-- n-to-1 splitting

Elseif wgt < Wlow
P = max(  1/mxspln,  wgt/Wave )  <-- limits survivor to mxspln*wgt
if  ξ < P

wgt = wgt/P <-- particle survives
else

wgt = 0 <-- particle killed
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Source Biasing

• Bias the PDFs used to select the angle, energy, or position or 
source particles
– Produce more source particles (with lower weights) in desired 

parts of phase space

True source: f(R,E,Ω)

Sample  (R',E', Ω') from g(R,E, Ω)

&  assign weight     f(R',E', Ω')/g(R',E', Ω')    to source particle

Choose g(R,E, Ω) to favor directions more important to tallies
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Forced Collisions

• Particles entering specified cells are split into collided & 
uncollided parts
– For distance-to-boundary d

Prob(no collision) = exp(-ΣTd)
Prob(collision)     = 1 - exp(-ΣTd)

d

  

� 

wgt ⋅e−ΣTd  

� 

wgt ⋅ 1− e−ΣTd( )
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Forced Collisions

• Sampling the flight distance s for a forced collision with max flight 
distance d

Sampling from a truncated exponential PDF:

  

� 

f(s) = ΣT ⋅ e−ΣTs

1− e−ΣTd , 0 ≤ s ≤ d

F(s) = 1− e−ΣTs

1− e−ΣTd

Solve  for  s : ξ = F(s)

s =
− ln 1− (1− e−ΣTd)ξ[ ]

ΣT
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Exponential Transform

• Encourage particles to head in a certain preferred direction, W0

– Replace   ΣT by     Σ*= ΣT [1 - p Ω•Ω0]
p   =  a parameter,  0<p<1
Ω0 = unit vector from particle position to detector
Ω = actual particle direction

– Sample flight distance s' from       g(s) = Σ*exp(-Σ*s)
– Adjust weight by factor:    

f(s')/g(s')  =  exp(-p Ω•Ω0 ΣTs')/[1 - p Ω•Ω0]

• Paths toward detector are stretched ( Σ* < ΣT )
• Paths away from detector are shortened ( Σ* > ΣT )

Ω0

Ω
Source or

Collision point
Detector
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Variance Reduction Goals & Cautions

• Maximize FOM - either reduce RE or T

• Keep the number of particles per cell roughly constant from 
source to detector

• Reduce the number of particles in unimportant regions

• Achieve adequate sampling of all portions of phase space

• Avoid over-biasing (e.g., over-splitting)

• Ensure that tallies pass statistical checks
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Parallel
Monte Carlo
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Perspective

• Fast desktop computers
1980s super:                   200 MHz 16 MB        10 GB $ 20 M
Today, Mac Pro:      8 x 3000 MHz 8000 MB      250 GB $   5  K

• Linux clusters + MPI + multi-core
– Cheap parallel computing
– Everyone can do parallel computing, not just national labs

• Mature Monte Carlo codes
– MCNP,  VIM,  KENO, MCBEND, MONK, COG, TART, RACER, RCP, …

• New generation of engineers/scientists
– Less patience for esoteric theory & tedious computing procedures
– Computers are tools, not to be worshipped
– What's a slide rule ???

➜ More calculations with Monte Carlo codes
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Trends in Computing Technology

• Commodity chips
Through early-2000s (little change since then):
– Microprocessor speed à ~2x gain / 18 months
– Memory size à ~2x gain / 18 months
– Memory latency à ~ no change (getting worse)

• High-end scientific computing
– Key driver (or limit) à economics:  mass production of 

desktop PCs & commercial servers

– Architecture à clusters:   with moderate number of 
commodity microprocessors on each 

node
multicore:    multiple CPUs per processor

permits threading within each node 
• Operating systems

– Desktop & server à Windows, Linux
– Supercomputers à Unix, Linux

CPU performance on supercomputer       ➜ same as desktop PC
High-performance scientific computing   ➜ parallel computing
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Parallel Computers
G
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1 GFLOP = 109 FLOP
1 TFLOP  = 1012 FLOP
1 PFLOP  = 1015 FLOP
1 EFLOP  = 1018 FLOP

Teraflop computers à ~ 103 processors
Petaflop computers à ~ 105 processors
Exaflop  computers à ~ 107 processors (?)
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Parallel Computers

• Characterize computers by:
– CPU: scalar, vector, superscalar, RISC, …..
– Memory: shared, distributed, cache, banks, bandwidth, …..
– Interconnects: bus, switch, ring, grid, …..

• Basic types: 

CPU

Mem

Traditional
CPU CPU CPU…..

Mem

Shared Memory Parallel

CPU

Mem

CPU

Mem

CPU

Mem

…..

Distributed Memory Parallel

CPU CPU

Mem

CPU CPU
CPU CPU

Mem

CPU CPU
CPU CPU

Mem

CPU CPU
…..

Clustered Shared Memory
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Approaches to Parallel Processing

High-level • Independent programs + message-passing
• Distribute work among processors
• Loosely-coupled
• Programmer must modify high-level algorithms

Mid-level • Threads (task-level)
• Independent tasks (subprograms) + shared memory
• For shared memory access, use locks on critical regions
• Compiler directives by programmers

Low-level • Threads (loop-level)
• Split DO-loop into pieces, compute, synchronize
• Compiler directives by programmers

Low-level • Pipelining or vectorization
• Pipelined execution of DO-loops
• Automatic vectorization by compilers &/or hardware,

or compiler directives by programmers
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Message-passing

– Independent programs
– Separate memory address space for each program (private 

memory)
– All control information & data must be passed between 

programs by explicit messages (SENDs & RECEIVEs)
– Can run on distributed or shared memory systems
– Efficient only when  Tcomputation >> Tmessages
– Standard message-passing:

• MPI

Program A
Program B

Program B Lots of computation

Interchange data 
via messages
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Threading (task-level)

– Single program, independent sections or subprograms
– Each thread executes a portion of the program
– Common address space, must distinguish private & shared data
– Critical sections must be "locked"
– Can run only on shared memory systems, not distributed memory
– Thread control by means of compiler directives
– Standard threading:

• OpenMP

program A
…..
!$omp parallel
call trnspt
!$omp end parallel
…..

end program A

subroutine trnspt 
…..
return
end subroutine trnspt

subroutine trnspt 
…..
return
end subroutine trnspt

Shared
Data

Address space for Program A
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Amdahl's Law

If a computation has fast (parallel) and slow (scalar) components, the 
overall calculation time will be dominated by the slower component

Overall System = Single CPU * ____1____
Performance Performance 1-F  + F/N

where F = fraction of work performed in parallel
N = number of parallel processors

Speedup   =  1 / ( 1-F  +  F/N )

For N=10 For N=infinity
F S F S F S F S 
20% 1.2 90% 5.3 20% 1.3 90% 10
40% 1.6 95% 6.9 40% 1.7 95% 20
60% 2.2 99% 9.2 60% 2.5 99% 100
80% 3.6 99.5% 9.6 80% 5 99.5% 200
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Amdahl's Law

My favorite example …..

Which system is faster?

System A: (16 processors)•(1 GFLOP each) =   16 GFLOP total

System B: (10,000 procs)•(100 MFLOP each) =   1,000 GFLOP total

Apply Amdahl's law, solve for F:

1 / ( 1-F + F/16 )  =  .1 / ( 1-F + F/10000)

è System A is faster, unless  >99.3% of work is parallel

• In general, a smaller number of fatter nodes is better
• For effective parallel speedups, must parallelize everything
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Parallel
Monte Carlo
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Parallel Algorithms

• Possible parallel schemes:

– Jobs run many sequential MC calculations, combine 
results

– Functional sources, tallies, geometry, collisions, ….. 

– Phase space space, angle, energy

– Histories Divide total number of histories among processors

• All successful parallel Monte Carlo algorithms to date have been 
history-based.

– Parallel jobs always works, variation on parallel histories
– Some limited success with spatial domain decomposition
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Boss / Worker  Algorithm (Simple)

• Boss task: control + combine tallies from each Worker 
• Worker tasks: Run histories, tallies in private memory

– Initialize:
Boss sends problem description to each Worker
(geometry, tally specs, material definitions, …)

– Compute, on each of N Workers:
Each Worker task runs 1/N of total histories.
Tallies in private memory.
Send tally results back to Boss.

– Combine tallies:
Boss receives tallies from each Worker &

combines them into overall results.
• Concerns:

– Random number usage
– Load-balancing
– Fault tolerance (rendezvous for checkpoint)
– Scaling
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Boss / Worker  Algorithm (Simple)

Control + Bookkeeping Computation

Boss

! initialize
do n=1,nworkers

send_info( n )

! Compute
nchunk = nhistories / nworkers
do n=1,nslaves  

k1 = 1 + (n-1)*nchunk
k2 = min( k1+nchunk, nhistories)
send_control( n, k1,k2 )

! Collect & combine results
totals(:) = 0
do n=1,nworkers

recv_tallies( n )
add_tallies_to_totals()

! Done
print_results()
save_files()

Worker 3

! Initialize
recv_info()

! Compute
recv_control( k1, k2 )
do k=k1,k2

run_history( k )

! Send tallies to 
send_tallies()

! Done
stop

Worker 2

! Initialize
recv_info()

! Compute
recv_control( k1, k2 )
do k=k1,k2

run_history( k )

! Send tallies to m
send_tallies()

! Done
stop

Worker 1

! Initialize
recv_info()

! Compute
recv_control( k1, k2 )
do k=k1,k2

run_history( k )

! Send tallies to Boss
send_tallies()

! Done
stop
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• Linear Congruential RN Generator
Sk+1 = g Sk + C   mod 2M

• RN Sequence & Particle Histories
••••••••••••••• ••••••••••••••• •••••••••••••••
1 2 3 etc.

MCNP stride for new history:     152,917

• To skip ahead k steps in the RN sequence:
Sk =  g Sk-1 + C   mod 2M =  gk S0 +  C (gk-1)/(g-1)   mod 2M

• Initial seed for n-th history
S0

(n) = gn*152917 S0 +  C (gn*152917-1)/(g-1)   mod 2M

This is easy to compute quickly using exact integer arithmetic

• Each history has a unique number
– Initial problem seed à initial seed for nth particle on mth processor
– If Worker knows initial problem seed & unique history number, can 

initialize RN generator for that history

Random Number Usage
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Fault Tolerance

• On parallel systems with complex system software & many CPUs, 
interconnects, disks, memory, MTBF for system is a major 
concern.

• Simplest approach to fault tolerance: 
– Dump checkpoint files every M histories (or XX minutes)  
– If system crashes, restart problem from last checkpoint

• Algorithm considerations
– Rendezvous every M histories. 
– Workers send current state to Boss, Boss saves checkpoint files

– Parallel efficiency affected by M.
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Fault Tolerance

• For efficiency, want     (compute time) >> (rendezvous time) 

– Compute time: Proportional to #histories/task

– Rendezvous time: Depends on amount of tally data & 
latency+bandwidth for message-passing 

B

W W W

RendezvousComputeControl

Repeat…
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Boss / Worker  Algorithm, with Rendezvous

– Initialize:
Boss sends problem description to each Worker
(geometry, tally specs, material definitions, …)

– For   rendezvous = 1, L

• Compute, on each of N Workers:
Each Worker task runs 1/N of (total histories)/L.
Tallies in private memory.
Send tally results back to Boss.

• Combine tallies:
Boss receives tallies from each Worker &

combines them into overall results.
• Checkpoint:

Boss saves current tallies & restart info in file(s)
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Load Balancing

• Time per history may vary significantly
– For problems using variance reduction:

• Particles headed in "wrong" direction may be killed quickly, leading to a short history.
• Particles headed in "right" direction may be split repeatedly. Since the split particles created are 

part of the same history, may give a very long history.

– For problems run on a workstation cluster:
• Workstation nodes in the cluster may have different CPU speeds
• Workstations in the cluster may be simultaneously used for interactive work, with highly variable 

CPU usage on that node.
• Node performance effectively varies continuously over time.

• Naïve solution
– Monitor performance per node (e.g., histories/minute)
– Periodically adjust number of histories assigned to each node, according to 

node performance

# histories assigned to node n   ~    measured speed of node n

• Better solution: self-scheduling
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Load Balancing – Self-Scheduling

• For a problem with N Worker processors, 
divide histories into more than N chunks.

– Let   L = number of chunks,   L > N
– Typically,    L ~ 20 N    or    L ~ 30 N

– Histories/chunk = (total histories) / L

– Worker: If idle, ask Boss for work. Repeat until no more work.
– Boss: Send chunk of work to idle Worker. Repeat until no more work.

– On average, imbalance in workload should be < 1/L

• Additional gains:
– Naïve Boss/Worker algorithm is synchronous
– Self-scheduling Boss/Worker algorithm is asynchronous. More overlap of 

communication & computation è reduced wait times & better performance
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Load Balancing – Self-Scheduling

• Much more communication with Boss, but only minimal amount of 
control info needed (1st & last history in chunk)

• Need to handle stopping condition carefully –
avoid "dangling" messages  

B

W W W

RendezvousComputeControl

Repeat…
Fast CPU
Medium CPU
Slow CPU

Each arrow: same # histories
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Load Balancing – Self-Scheduling
Boss

! initialize
do n=1,nworkers

send_info( n )

! Compute
nchunks = nworkers*20  
nh = nhistories / nchunks
do n=1,nchunks  

k1 = 1 + (n-1)*nh
k2 = min( k1+nh, nhistories)
recv_idle_proc( M )
send_control( M, k1,k2 )

enddo

! Collect & combine results
totals(:) = 0
do n=1,nworkers

recv_idle_proc( M )
send_control( M, 0, -1 )
recv_tallies( M )
add_tallies_to_totals()

enddo

! Done
print_results()
save_files()

Worker 3

! Initialize
recv_info()

! Compute
recv_control( k1, k2 )
do k=k1,k2

run_history( k )

! Send tallies to Boss
send_tallies()

! Done
stop

Worker 2

! Initialize
recv_info()

! Compute
recv_control( k1, k2 )
do k=k1,k2

run_history( k )

! Send tallies to Boss
send_tallies()

! Done
stop

Worker 1

! Initialize
recv_info()

! Compute
do

send_idle_proc()  
recv_control( k1, k2 )
if( k1>k2 )  exit
do k=k1,k2

run_history( k )
enddo

enddo

! Send tallies to Boss
send_tallies()

! Done
stop
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Hierarchical Parallelism

• For clustered SMPs, 
– Use message-passing to distribute work among Workers ("boxes")
– Use threading to distribute histories among individual processors on box

• Only the Master thread (thread 0) on each Worker
uses MPI send/recv's

Boss

Worker WorkerWorker

HistoriesHistories HistoriesHistories HistoriesHistories

Message-passing

Threads Threads Threads

Worker Nodes
In Cluster

Cpu-cores
In Nodes

Boss Node
In Cluster
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Boss / Worker  Algorithm, threaded & self-scheduling

Boss

! initialize
do n=1,nworkers

send_info( n )

! Compute
nchunks = nworkers*20  
nh = nhistories / nchunks
do n=1,nchunks  

k1 = 1 + (n-1)*nh
k2 = min( k1+nh, nhistories)
recv_idle_proc( M )
send_control( M, k1,k2 )

enddo

! Collect & combine results
totals(:) = 0
do n=1,nworkers

recv_idle_proc( M )
send_control( M, 0, -1 )
recv_tallies( M )
add_tallies_to_totals()

enddo

! Done
print_results()
save_files()

Worker 3

! Initialize
recv_info()

! Compute
recv_control( k1, k2 )
do k=k1,k2

run_history( k )

! Send tallies to Boss
send_tallies()

! Done
stop

Worker 2

! Initialize
recv_info()

! Compute
recv_control( k1, k2 )
do k=k1,k2

run_history( k )

! Send tallies to master
send_tallies()

! Done
stop

Worker 1

! Initialize
recv_info()

! Compute
do

send_idle_proc()  
recv_control( k1, k2 )
if( k1>k2 )  exit
!$OMP PARALLEL DO
do k=k1,k2

run_history( k )
enddo

enddo

!$OMP PARALLEL
!$  combine_thread_tallies()

! Send tallies to Boss
send_tallies()

! Done
stop
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Parallel
Monte Carlo
Performance
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Parallel MC Computational Characteristics

• For Boss/Worker algorithms (with self-scheduling, fault tolerance, & 
threads):

– No communication among Worker tasks

– Occasional communication between Boss & Workers (rendezvous)

– Worker tasks are compute-intensive
• Few DO-loops
• 40% of ops are test+branch (IF… GOTO…)
• Irregular memory access, no repetitive patterns

– For fixed-source problems:
• Only 1 rendezvous is strictly necessary, at end of calculation
• More rendezvous used in practice, for fault tolerance

– For eigenvalue problems (K-effective):
• Must have a rendezvous every cycle (cycle = batch = generation)
• Boss controls iteration & source sampling

• Common-sense approach to performance:
Fewer rendezvous è better parallel performance
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Parallel MC Performance Measures

• Metrics
– Speedup SN =  T1 / TN N = # Worker processors

– Efficiency EN =  SN / N

• Fixed overall work (fixed problem size)
– Efficiency decreases with N
– Speedup (eventually) drops as N increases
– Why?  

As N increases, same communication/processor, but less work/processor (fewer 
histories/processor) è (computation/communication) decreases

• Fixed work per processor (scaled problem size)
– Efficiency approx. constant with N
– Speedup approx. linear with N
– Why?

As N increases, same communication/processor, same work/processor 
(# histories ~ N)  è (computation/communication) stays  approx. same

– Called scaled speedup
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Parallel MC Performance Limits

• Another way to determine efficiency

Parallel Efficiency = TC / ( TC + TM )

TC =  computing time
TM  =  time for messages, not overlapped with computing

• Workers can send messages in parallel

• Boss receives & processes messages serially

If enough messages are sent to Boss,  extra wait time will limit 
performance
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Parallel MC Performance Scaling

N = # processors
T1 = CPU time for M histories using 1 processor

(Depends on physics, geometry, compiler, CPU speed, memory, etc.)
L   = amount of data sent from 1 Worker each rendezvous

TS = 0 negligible, time to distribute control info

TR = s + L/r s = latency for message,  r = streaming rate

TC
fix = T1 / N fixed problem size, M histories/rendezvous

TC
scale = T1 scaled problem size, NM histories/rendezvous

B

W W W

TS TC TR

RendezvousComputeControl

Repeat…
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Parallel MC Performance Scaling

• Scaling models,  for Boss/Worker with serial rendezvous

– "fixed" = constant number of histories/rendezvous, M  (constant work)
– "scaled" = M histories/Worker per rendezvous,  NM total       (constant time)

Histories/rendezvous Speedup

fixed S = N / ( 1 + cN2 )

scaled S = N / ( 1 + cN )

N = number of Workers
c = ( s + L/r ) / T1

T1 ~ M,  more histories/rendezvous è larger T1 ,  smaller c
S+L/r, fixed, determined by number of tallies, ….

As  Màinfinity,   cà0, SàN (limit for 1 rendezvous)

S

S

N

N
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Parallel MC Performance Scaling

N = number of Workers
c = ( s + L/r ) / (M1th)
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Parallel MC Performance Scaling
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Parallel MC Summary

• Boss/Worker algorithms work well
– Load-balancing: Self-scheduling
– Fault-tolerance: Periodic rendezvous
– Random numbers: Easy, with LCG & fast skip-ahead algorithm
– Tallies: Use OpenMP "critical sections"
– Scaling: Simple model, more histories/Worker + fewer rendezvous
– Hierarchical: Boss/Worker MPI, OpenMP threaded Workers 
– Portability: MPI/OpenMP, clusters of anything

• Remaining difficulties
– Memory size: Entire problem must fit on each Worker

• Domain-decomposition has had limited success
– Should be OK for reactor problems
– May not scale well for shielding or time-dependent problems
– For general 3D geometry, effective domain-decomposition is unsolved problem

• Random access to memory distributed across nodes gives huge slowdown
– May need functional parallelism with "data servers"
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MCNP
Parallel

Calculations
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Blue Mountain – 3 TeraOps
(R.I.P.)

Q – 20 TeraOps
(R.I.P.)

DOE Advanced Simulation & Computing – ASC

Red Storm
Blue Gene/L
Hurricane
Moonlight
Cielo

Lightning – 30 TeraOps
(R.I.P.)

Roadrunner – 1.3 
PetaOps
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Hierarchical Parallelism

• Use message-passing to distribute work among Workers ("boxes")

• Use threading to distribute histories among individual cpus on box

• 1,000 processor jobs are "routine"

Boss

Worker WorkerWorker

HistoriesHistories HistoriesHistories HistoriesHistories

Message-passing

Threads Threads Threads

MPI

OpenMP
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MCNP Parallel Calculations

N = total number of MPI tasks,   Boss + (N-1) Workers

M = number of OpenMP threads/Worker

• Running on parallel systems with MPI only

mpirun -np N -bynode mcnp6.mpi      i=inp01  …..

• Running with threads only

mcnp6   tasks  M i=inp01  …..

• Running on parallel systems with MPI & threads

mpirun -np N -bynode mcnp6.mpi   tasks  M i=inp01  
…..

If submitting jobs through a batch system (e.g., LSF, Moab, ...),
N & M must be consistent with LSF requested resources 
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MCNP Parallel Calculations

• How many threads ?
– Max number of threads = # CPU-cores per node

• ASCI Bluemountain: 128 cpus / node
• ASCI Q: 4 cpus /node
• Laptop PC cluster: 1 cpu / node

– Experience on many systems has shown that a moderate number of threads per 
Worker is efficient; using too many degrades performance

• ASCI Bluemountain: 4-12 threads/Worker usually effective
>16  threads/Worker usually has bad performance

• ASCI Q: 4 threads/Worker is effective

– Rules-of-thumb vary for each system
• Thread efficiency is strongly affected by operating system design
• Scheduling algorithm for threads used by operating system is generally designed to be efficient 

for small number of threads (<16)
• For large number of threads, context-switching & cache management may take excessive time, 

giving poor performance
• Other jobs on system (& their priority) affect thread performance
• No definite rules – need to experiment with different numbers of threads
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MCNP Parallel Calculations

• Parallel performance is sensitive to number of rendezvous
– Can't control number of rendezvous directly
– The following things cause a rendezvous:

• Printing tallies
• Dumping to the RUNTPE file
• Tally Fluctuation Chart (TFC) entries
• Each cycle of eigenvalue problem

• Use PRDMP card to minimize print/dump/TFC

PRDMP ndp ndm mct ndmp dmmp

ndp     = increment for printing tallies ç use large number
ndm    = increment for dump to RUNTPE ç use large number
mct    = flag to suppress time/date info in MCTAL
ndmp  = max number of dumps in RUNTPE
dmmp = increment for TFC & rendezvous ç use large number

For fixed-source problems, increments are in particles
For eigenvalue problems, increments are in cycles
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MCNP Parallel Calculations

• Keff calculations:  Use KCODE card for hist/cycle

– Want to reduce the number of cycles
– More histories in each cycle
– Should run hundreds of cycles or more for good results

KCODE nsrck rkk ikz kct …..

nsrck = histories / cycle ç use a large number
rkk = initial guess for Keff
ikz = number of initial cycles to discard
kct = total number of cycles to run

Suggested: nsrck ~   (thousands) x (number of processors)
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MCNP5 Parallel Scaled Speedup 

ASCI Q system,
using MPI+OpenMP, 
4 threads/MPI-task
Fixed-source
calculation
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MCNP5 Parallel Calculations
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MCNP - Threading with OpenMP

• MCNP performance - both serial & parallel - depends strongly on 
the Fortran-90 compiler & options used

– Runtime factors of 2-4x  with different compilers on same hardware

– Runtime factors of 2-4x with different options on same hardware & 
compiler

• Parallel performance

– MCNP5 & MCNP6 have always supported parallel calculations with 
message-passing (MPI) & threading (OpenMP)

– Prior to mid-2006, Fortran compilers for Windows/Linux/Mac did a 
terrible job at threading.  We recommended using only MPI.

– Recently, using OpenMP threading with Intel compilers on 
Windows/Linux/Mac shows excellent speedups -- nearly 2x on dual-
core, 3-4x on quad-core
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MCNP - Threading on the Mac Pro

Mac Pro -- MCNP Speedup vs Threads
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Number of Threads
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Theoretical Max

KCODE calculation

Fixed-source
Calculation

Hardware
– Mac Pro
– 2 x Quad-core Xeon
– 3GHz
– 8 GB memory

Software
– Mac OS X 10.4.11
– Intel F90, 10.0.017

-O1  -openmp
– MCNP5 / 1.50

MCNP Calculations
– KCODE

• BAWXI2 
benchmark

• kcode 5000 1 10 
204

– Fixed-source
• oil-well log, mode 

n
• nps 500000
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MCNP - Threading
2009-03-03

Hardware
– Lobo

• 4 x Quad-core AMD Opteron
• 2.2 GHz, 32 GB memory

– Mac Pro
• 2 x Quad-core Intel Xeon
• 3GHz,  8 GB memory

Software
– MCNP5-1.51
– Intel-10 F90, "-O1 -openmp"

MCNP Calculations

Criticality Calculation
BAWXI2 benchmark
kcode 25000 1 10 204

MCNP Threading - Criticality Problem
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MCNP - Threading

MCNP Threading - Oil Well Logging Problem

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Number of Threads

S
p

e
e

d
u

p

2009-03-03

Hardware
– Lobo

• 4 x Quad-core AMD 
Opteron

• 2.2 GHz, 32 GB memory

– Mac Pro
• 2 x Quad-core Intel Xeon
• 3GHz,  8 GB memory

Software
– MCNP5-1.51
– Intel-10 F90, "-O1 -openmp"

MCNP Calculations

Oil Well Logging Calculation
inp12 benchmark
Nps 500000

9.1
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Parallel Processing
For Large

Monte Carlo Calculations
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Domain Decomposition

If a Monte Carlo problem is too large to fit into memory of a single 
processor

– Need periodic synchronization to interchange particles among 
nodes

– Use message-passing (MPI) to interchange particles

➜ Domain decomposition is often used when the entire problem will 
not fit in the memory of a single SMP node

Collect
Problem
Results

Decompose
problem into

spatial domains

Follow histories in each
domain in parallel,

move particles to new
domains as needed
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Parallel Monte Carlo

• Inherent parallelism is on particles
– Scales well for all problems

• Domain decomposition
– Spatial domains on different processors
– Scales OK for Keff or α calculations,  

where particle distribution among domains is roughly uniform
– Does not scale for time-dependent problems

due to severe load imbalances among domains

• Domain decomposition - scaling with N processors
– Best: performance ~ N (uniform distribution of particles)
– Worst: performance ~ 1 (localized distribution of particles)
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Parallel Monte Carlo

• Data is distributed by domain decomposition,
but parallelism is on particles

• Solution ?

Parallel on particles  +  distributed data

• Particle parallelism + Data Decomposition
– Existing parallel algorithm for particles
– Distribute data among processor nodes
– Fetch the data to the particles as needed (dynamic)

– Essentially same approach as used many years ago for CDC (LCM) or 
CRAY (SSD) machines

– Scales well for all problems (but slower)
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Parallel Monte Carlo

• Particle parallelism + data decomposition -- logical view:

• Mapping of logical processes onto compute nodes is flexible:
– Could map particle & data processes to different compute nodes
– Could map particle & data processes to same      compute nodes

• Can replicate data nodes if contention arises

Data
Node

Data
Node

Data
Node

Parallel
Calculation

Data
Layer

Particle
Node

Particle
Node

Particle
Node

Particle
Node

Particle
Node

Master
Process
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Parallel Monte Carlo

• Particle parallelism + data decomposition 

Entire physical problem

Particle Node Particle Node

Local copies of data for
particle neighborhood

Data Node Data Node Data Node Data Node
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Parallel Monte Carlo

• History modifications for data decomposition
source

while   wgt > cutoff

. compute distances & keep minimum:

. dist-to-boundary

. dist-to-time-cutoff

. dist-to-collision

. dist-to-data-domain-boundary

. move particle

. pathlength tallies

. if    distance == dist-to-data-domain-boundary

. fetch new data

. collision physics

. roulette & split

. . .
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Parallel Monte Carlo

• Data windows & algorithm tuning
– Defining the "particle neighborhood" is an art
– Anticipating the flight path can guide the

pre-fetching of blocks of data
– Tuning parameters:

• How much data to fetch ?
• Data extent vs. particle direction ?

• Examples

Entire physical problem
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Conclusions

For Monte Carlo problems which can fit in memory:

• Concurrent scalar jobs - ideal for Linux clusters

• Boss/Worker parallel algorithm (replication) works well
– Load-balancing: Self-scheduling
– Fault-tolerance: Periodic rendezvous
– Random numbers: Easy, with LCG & fast skip-ahead algorithm
– Tallies: Use OpenMP "critical sections"
– Scaling: Simple model, more histories/Worker + fewer rendezvous
– Hierarchical: Boss/Worker MPI, OpenMP threaded Workers 
– Portability: MPI/OpenMP, clusters of anything

For Monte Carlo problems too large to fit in memory:

• Spatial domain decomposition (with some replication) can work for some 
problems

• Particle parallelism + data decomposition is a promising approach which should 
scale for all problems
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Monte Carlo 
Parameter Studies &
Uncertainty Analyses

With MCNP6

From LA-UR-16-23533
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• Introduction
• mcnp_pstudy
• Examples
• Usage

– Parameter definition
– Parameter expansion
– Constraints
– Case setup & execution
– Collecting & combining results

• Statistics
• Practical Examples from Criticality Safety
• Advanced Topics

Outline
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Frequent Questions

How are calculated results affected by:

• Nominal dimensions
– With minimum & maximum values ?
– With as-built tolerances ?
– With uncertainties ?

• Material densities
– With uncertainties ?

• Data issues
– Different cross-section sets ?

• Stochastic materials
– Distribution of materials ?

Monte Carlo perturbation theory can handle the case of independent 
variations in material density, but does not apply to other cases.

Brute force approach:  
Run many independent Monte Carlo calculations, 
varying the input parameters.
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mcnp_pstudy

• To simplify & streamline the setup, running, & analysis of Monte Carlo 
parameter studies & total uncertainty analyses, a new tool has been 
developed: mcnp_pstudy

• Control directives are inserted into a standard MCNP input file
– Define lists of parameters to be substituted into the input file
– Define parameters to be sampled from distributions & then substituted 
– Define arbitrary relations between parameters
– Specify constraints on parameters, even in terms of other parameters
– Specify repetitions of calculations
– Combine parameters as outer-product for parameter studies
– Combine parameters as inner-product for total uncertainty analysis

• Sets up separate calculations
• Submits or runs all jobs
• Collects results
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mcnp_pstudy

• Completely automates the setup/running/collection for parameter 
studies & total uncertainty analyses
– Painless for users
– 1 input file & run command can spawn 100s or 1000s of jobs
– Fast & easy way to become the #1 user on a system

(Added bonus:   make lots of new friends in computer ops &
program management.)

• Ideal for Linux clusters & parallel ASC computers:
– Can run many independent concurrent jobs,  serial or parallel
– Faster turnaround:  Easier to get many single-cpu jobs through the 

queues, rather than wait for scheduling a big parallel job
– Clusters always have some idle nodes
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mcnp_pstudy

• mcnp_pstudy is written in perl

– 640 lines of perl (plus 210 lines of comments)
– Would have taken many thousands of lines of Fortran or C

• Portable to any computer system 
– Tested on Unix, Linux, Mac OS X, Windows
– For Windows PCs, need to have perl installed 

(ActivePerl is free at  activestate.com/activeperl, easy to install)

• Can be modified easily if needed
– To add extra features
– To accommodate local computer configuration

• Node naming conventions for parallel cluster
• Batch queueing system for cluster
• Names & configuration of disk file systems (ie, local or shared)
• Location of  MCNP6  and  MCNP6.mpi
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Examples

gdv
c
1  100 -18.74  -1   imp:n=1
2  0            1   imp:n=0

1     so 8.741

kcode 10000  1.0  15  115
ksrc 0 0 0
m100  92235 -94.73   92238 -5.27
prdmp 0 0 1 1 0

gdv-A
C @@@  RADIUS = 8.500  8.741  8.750
1  100 -18.74  -1   imp:n=1
2  0            1   imp:n=0

1     so  RADIUS

kcode 10000  1.0  15  115
ksrc 0 0 0
m100  92235 -94.73   92238 -5.27
prdmp 0 0 1 1 0

MCNP input for 
simple Godiva calculation

MCNP input using mcnp_pstudy, 
Run 3 different cases -

Each with a different radius 
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Basics

• Within an MCNP input file, all directives to mcnp_pstudy must 
begin with

C  @@@

• To continue a line, use "\" as the last character
c  @@@  XXX = 1   2   3   4   5  6  \
c  @@@        7   8   9  10

• Parameter definitions have the form
c  @@@   P =   value or list
c  @@@   P = ( arithmetic-expression )

• Constraints have the form
c  @@@   CONSTRAINT = (  expression )

• Control directives have the form
c  @@@   OPTIONS =  list-of-options
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Parameter Definition
• Parameters

– Like C or Fortran variables
– Start with a letter, contain only letters, integers, underscore
– Case sensitive
– Parameters are assigned values,  either number(s) or string(s)
– Examples: R1, r1, U_density, U_den

• Single value
C  @@@ P1  =  value

• List of values
C  @@@ P2  =  value1  value2  …  valueN

• List of N random samples from Probability Densities:
– Uniform

C  @@@ P3  =  uniform  N    min   max
– Normal

C  @@@ P4  =  normal  N   ave dev
– Lognormal

C  @@@ P5  =  lognormal  N   ave dev
– Beta

C  @@@ P6  =  beta N  a  b     [a,b are integers]
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Parameter Definition

• Arithmetic expression
C  @@@ P5  = (  arithmetic-statement )

– Can use numbers & previously defined parameters
– Can use arithmetic operators  +,  -,  *,  /,    % (mod),  ** (exponentiation)
– Can use parentheses   (  )
– Can use functions:   sin(),  cos(),  log(),  exp(),  int(),  abs(),  sqrt()
– Can generate random number in (0,N): rand(N)
– Can use  rn_seed() to get odd seed for mcnp RN generator in [1,248-1]
– Must evaluate to a single value
– Examples:

c  @@@   SEED = (  rn_seed()  )
c  @@@  FACT  = normal 1  1.0 .05
c  @@@  UDEN  = ( 18.74 * FACT )
c  @@@  URAD  = ( 8.741 * (18.74/UDEN)**.333333 )

• Repetition  (list of integers, 1..N)
C  @@@ P6  =  repeat  N
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Parameter Definition

• Examples
C  rod height in inches, for search
C  @@@  HROD = 5  10  15  20  25  30  35  40  45  50

C  nominal dimension, with uncertainty
C  @@@  X1 = normal  25   1.234  .002

C  dimension, with min & max 
C  @@@  X2 = uniform 25   1.232  1.236

C  try different cross-sections
C  @@@  U235 = 92235.42c  92235.49c  92235.52c  \
C  @@@         92235.60c  92235.66c

C  different random number seeds (odd)
C  @@@  SEED = (  rn_seed()  )
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Parameter Expansion

• After all parameters are defined,  mcnp_pstudy expands them 
into sets to be used for each separate MCNP calculation

– Outer product expansion: All possible combinations.
Parameters specified first vary fastest.

– Inner product expansion: Corresponding parameters in sequence.
If not enough entries, last is repeated.

Example: c @@@  A  =  1  2
c @@@  B  =  3  4
c @@@  C  =  5

Outer: Case 1: A=1, B=3, C=5
Case 2: A=2, B=3, C=5
Case 3: A=1, B=4, C=5
Case 4: A=2, B=4, C=5

Inner: Case 1: A=1, B=3, C=5
Case 2: A=2, B=4, C=5



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       404

Constraint Conditions

• After all parameters are defined & expanded, constraint conditions are 
evaluated

• Constraints involve comparison operators ( >, <, >=, <=, ==, != ) or logical 
operators ( && (and), || (or), ! (not) ), and may involve arithmetic or 
functions

• Constraints must evaluate to True or False
• If a any constraint is not met,  the parameters for that case are discarded 

& re-evaluated until all of the constraints are satisfied

Example

C pick dimensions between min & max 
C
C @@@  X1  =  uniform 1  3.9  4.1
C @@@  X2  =  uniform 1  5.9  6.1
C 
C keep x1 & x2 if  x1+x2 <= 10.0,  otherwise reject & try again
C
C @@@  CONSTRAINT = ( X1 + X2  <=  10.0 )
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Creating INP Files & Job Directories

• Directory structure for MCNP5 jobs

– Unix filesystem conventions followed
JOBDIR/case001/inp,  JOBDIR/case002/inp, etc.

• Values of parameters are substitued into the original MCNP5 input 
file to create the input files for each case
– Parameters substituted only when exact matches are found
– Example:     UDEN matches  UDEN,  and not  UDEN1, UDENS, uden

JOBDIR

case001 …..case003case002

inp inpinp
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Job Options

• Specifying options for running jobs
– Can be specified on the mcnp_pstudy command-line

mcnp_pstudy  -inner    -setup -i inp01
– Within the INP file

c @@@ OPTIONS = -inner

• Common options
-i  str The INP filename is str, default = inp
-jobdir  str Use str as the name of the job directory
-case    str Use str as the name for case directories
-mcnp_opts str Append  str to the MCNP5 run command,

may be a string such as   'o=outx tasks 4'
-bsub_opts str str is appended to the LSF bsub command
-inner Inner product approach to case parameter substitution
-outer Outer product approach to case parameter substitution
-setup Create the cases & INP files for each
-run Run the MCNP5 jobs on this computer
-submit Submit the MCNP5 jobs using LSF bsub command
-collect Collect results from the MCNP5 jobs
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Running or Submitting Jobs

• Jobs can be run on the current system, or can be submitted to a 
batch queueing system (e.g., LSF)

• Tally results & K-effective can be collected when jobs finish

Examples:

bash:  mcnp_pstudy -inner -i inp01 -setup
bash:  mcnp_pstudy -inner -i inp01 -run
bash:  mcnp_pstudy -inner -i inp01 -collect

bash:  mcnp_pstudy -inner -i inp01 -setup -run -collect

bash:  mcnp_pstudy -inner -i inp01 -setup -submit
… wait till all jobs complete…

bash:  mcnp_pstudy -inner -i inp01   -collect



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       408

Creating Input Files ONLY

• To bypass the creation of job directories, and running/submitting 
problems:

– A special command line option is available:    -inponly

– Invoking this option performs the parsing & setup of the input files for 
each case, but the resulting mcnp input files are placed in the current 
directory with default names of the form

inp_case001,   inp_case002, etc.

– Using    -case study01a  -inponly would result in files with 
names

inp_study01a001,  inp_study01a002,  etc.

– Other options   -run, -submit   cannot be used if  -inponly is 
present

– The option  -whisper  can be used, and is equivalent to -inponly
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Combining Results

• Tally results & K-effective from separate cases can be combined using 
batch statistics:

where  M  is the number of cases & Xk is some tally or Keff for case k

• Variance due to randomness in histories decreases as 1/M,
but variance due to randomness in input parameters is constant� 

X = 1
M ⋅ Xk

k= 1

M
∑ σX = 1

M−1 ⋅
1
M Xk

2

k= 1

M
∑ − X 2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

� 

σX 
2 ≈ σX , Monte

     Carlo

2 + σX , Initial
     Conditions

2

Varies as 1/M ~ Constant
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Examples

gdv-F
c vary fuel radius - normal, 5%sd
c vary fuel density- normal, 5%sd
c
c @@@ OPTIONS = -inner
c
c @@@ DFACT = normal 50  1.0 .05
c @@@ UDEN = ( DFACT * 18.74 )
c
c @@@ UFACT = normal 50  1.0 .05
c @@@ URAD  = ( UFACT * 8.741 )
c
1    100  -UDEN -1   imp:n=1
2    0             1   imp:n=0

1    so  URAD

kcode 10000  1.0  15  115
ksrc  0. 0. 0.
m100  92235 -94.73   92238 -5.27
prdmp 0 0 1 1 0

gdv-E
c vary fuel density - normal, 5%sd,
c adjust the radius to keep constant mass
c
c @@@ FACT= normal 50  1.0 .05
c @@@ UDEN= ( 18.74*FACT )
c @@@ URAD= ( 8.741*(18.74/UDEN)**.333333 )
c
1     100  -UDEN -1   imp:n=1
2     0             1   imp:n=0

1     so  URAD

kcode 10000  1.0  15  115
ksrc  0. 0. 0.
m100  92235 –94.73   92238 –5.27
prdmp 0 0 1 1 0

Vary the fuel density randomly & adjust 
radius for constant mass, for 50 cases

Vary fuel density & mass 
independently, for 50 cases
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Examples
Table 1. Results from varying parameters in the Godiva problem
Problem Description K-effective σK-eff

base
Base case, discard 15 initial cycles,
retain 100 cycles with 10K
histories/cycle, 1M total histories

0.9970 0.0005

A Repeat the base problem 50 times,
50M total histories 0.9972 0.0001

B
Vary the fuel density only:  sample
from a normal distribution with 5%
std.dev, 50M total histories

0.9961 0.0061

C
Vary the fuel radius only:  sample
from a normal distribution with 5%
std.dev, 50M total histories

1.0057 0.0051

D
Vary the enrichment only, sample
from a normal distribution with 5%
std.dev, 50M total histories

0.9890 0.0027

E

Sample the fuel density from a
normal distribution with 5% std.dev,
and adjust the fuel radius to keep
constant fuel mass, 50M total
histories

0.9966 0.0042

F

Sample the fuel density from a
normal distribution with 5% std.dev,
and independently sample the
radius from a normal distribution
with 5% std.dev, 50M total histories

1.0073 0.0076
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Applications

• Parameter studies
– Run a series of cases with different control rod positions
– Run a series of cases with different soluble boron concentrations
– Run a series of cases sampling certain dimensions from a Uniform or 

Normal probability density
– Run a series of cases substituting different versions of a cross-section

• Total uncertainty analysis
– Run a series of cases varying all input parameters according to their 

uncertainties
• Parallel processing using a "parallel jobs" approach

– Running N separate jobs with 1 cpu each will be more efficient than 
running 1 job with N cpus

– Eliminates queue waiting times while cpus are reserved
– Take advantage of cheap Linux clusters

• Simulation of stochastic geometry
– Run a series of cases with portions of geometry sampled randomly, 

with a different realization in each case
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Conclusions

• mcnp_pstudy works
– In use regularly at LANL for a variety of real applications
– Developed on Mac & PC, runs anywhere
– Easy to customize, if you have special needs

• To get it:
– Included with MCNP6 distribution

FB Brown, JE Sweezy, RB Hayes, "Monte Carlo Parameter Studies and 
Uncertainty Analyses with MCNP5", PHYSOR-2004, Chicago, IL (April, 
2004)
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Practical Examples from Criticality Safety

Examples

• wval4:     4.5 kg Pu Sphere, Ta-reflected with varying reflector thickness

• wval1:     4.5 kg Pu Ingot, solid cylinder with varying H/D

• wval2:     4.5 kg Pu Ring, hollow cylinder with varying H & Rin
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Example

wval4,
4.5 kg Pu Sphere,

Ta-reflected



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       416

Example wval4:  4.5 kg Pu Sphere, Ta-reflected   (1)

• 4.5 kg Pu-239 sphere 
• Pu density = 19.8  g/cm3

• Reflected radially with Ta

• Vary the Ta-reflector thickness 
over the range  0.+ – 30.  cm

– Start with wval4.txt, input for thickness=7.62
mcnp6   i=wval4.txt  

– Copy wval4.txt to wval4p.txt, then insert directives for mcnp_pstudy
• Define list for thickness:

c @@@ THICK =  0.01  5.  10.  15.  20.  25.  30.
• For a given THICK, compute reflector Rin & Rout 
• Use parameters for dimensions & location of KSRC point
• Run:

mcnp_pstudy -i wval4.txt  -mcnp_opts ‘tasks 4’  -setup
…… examine files    case*/inp
mcnp_pstudy -i wval4.txt  -mcnp_opts ‘tasks 4’  -run
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Example  wval4:  4.5 kg Pu Sphere, Ta-reflected   (2)
wval4:  Study of Pu reflected with Ta
c
c  Pu mass    = 4500 g
c  Pu density = 19.8 g/cc
c  Pu volume  = 227.272727
c
c  reflector definition:
c    reflector thickness    = 7.62 
c    reflector inner radius = 3.7857584
c    reflector outer radius = 11.405758
c
1   4 -19.80  -1        imp:n=1 
2   1 -16.69  +1 -2     imp:n=1
20   0         +2        imp:n=0

1 so  3.7857584
2 so  11.405758

kcode 10000 1.0 50 250
sdef pos=0 0 0  rad=d1  
si1  0 3.78
sp1  -21 2

c
m1  73180.80c 0.00012   73181.80c 0.99988
m4  94239.80c 1
prdmp 9e9 9e9 1 9e9

wval4p:  Study of Pu reflected with Ta
c
c  Pu mass    = 4500 g
c  Pu density = 19.8 g/cc
c  Pu volume  = 227.272727
c
c  vary reflector thickness from 0+ to 30 cm
c
c  @@@  THICK   = .01  5. 10. 15. 20. 25. 
30.
c  @@@  R_INNER = 3.7857584
c  @@@  R_OUTER = ( R_INNER + THICK )
c
c  reflector definition:
c    reflector thickness    = THICK cm
c    reflector inner radius = R_INNER cm
c    reflector outer radius = R_OUTER cm
c
1   4 -19.80  -1        imp:n=1 
2   1 -16.69  +1 -2     imp:n=1
20   0         +2        imp:n=0

1 so    R_INNER
2 so    R_OUTER

kcode 10000 1.0 50 250
sdef pos=0 0 0 rad=d1
si1  0  R_INNER
sp1  -21 2

c
m1  73180.80c 0.00012   73181.80c 0.99988
m4  94239.80c 1
prdmp 9e9 9e9 1 9e9
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wval4,  thick=7.62
mcnp6  i=wval4.txt

k = 0.94638 (41)

wval4p,  varying thick
mcnp_pstudy -i wval4p.txt   -setup   -run

T=.01   case001 KEFF    7.91693E-01     KSIG    3.14948E-04
T=5.0   case002 KEFF    9.27157E-01     KSIG    4.47334E-04
T=10.   case003 KEFF    9.54775E-01     KSIG    4.11031E-04
T=15.   case004 KEFF    9.61644E-01     KSIG    4.34033E-04
T=20.   case005 KEFF    9.62867E-01     KSIG    4.37235E-04
T=25.   case006 KEFF    9.63899E-01     KSIG    4.04508E-04
T=30.   case007 KEFF    9.63160E-01     KSIG    4.27633E-04

Example  wval4:  4.5 kg Pu Sphere, Ta-reflected   (3)
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Example

wval1,
4.5 kg Pu Ingot,

varying H/D 
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Example wval1: 4.5 kg Pu Ingot, varying H/D   (1)

• 4.5 kg Pu-239 right-circular cylinder 
• Pu density = 19.86 g/cm3

• Reflected radially with 1 inch of water
• Reflected on the bottom with ¼ inch steel

• Vary the height-to-diameter (H/D) 
over the range  0.5 – 3.0

– Start with wval1.txt, input for H/D = 1
mcnp6   i=wval1.txt  

– Copy wval1.txt to wval1p.txt, then insert directives for mcnp_pstudy
• Define list for HD:

c @@@ HD =  0.5  1.0  1.5  2.0  2.5  3.0

• For a given H/D, compute Pu radius, 
then other dimensions

• Use parameters for dimensions & location of KSRC point
   

V = (Pu mass) (Pu density)

V = HπR2 = (H/D) ⋅ 2πR3

R = V 2π (H/D)⎡⎣ ⎤⎦
1/3
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Example  wval1:  4.5 kg Pu Ingot, varying H/D   (2)
wval1:  4500 g Pu metal,  H/D = 1
c reflected 1 inch water radially, 
c 0.25 in steel bottom
c
1 1 -19.860000  -1           imp:n=1
11 3 -1.0       +1 -11       imp:n=1
14 6 -7.92     -30          imp:n=1
15 0             +11 +30 -20  imp:n=1
20 0 +20                      imp:n=0

1  rcc 0 0 0       0 0 6.607662 3.303831
11  rcc 0 0 0       0 0 6.607662 5.843831
20  rcc 0 0 -2.54   0 0 91.44     91.44
30  rcc 0 0 -0.635  0 0 0.635     76.20

kcode 10000 1.0 50 250
ksrc 0 0 3.303831
m1  94239.80c 1
m3   1001.80c 0.66667    8016.80c 0.33333 
mt3  lwtr.20t
m6  24050.80c 0.000757334

24052.80c 0.014604423 
24053.80c 0.001656024 
24054.80c 0.000412220 
26054.80c 0.003469592 
26056.80c 0.054465174 
26057.80c 0.001257838 
26058.80c 0.000167395 
25055.80c 0.00174 
28058.80c 0.005255537 
28060.80c 0.002024423 
28061.80c 0.000088000 
28062.80c 0.000280583 
28064.80c 0.000071456

prdmp 9e9 9e9 1 9e9 

wval1p:  4500 g Pu metal, various H/D
c reflected 1 inch water radially, 
c 0.25 in steel bottom
c
c   V = H pi R**2 = (H/D) 2pi R**3
c   R = (V/(2pi H/D)**1/3
c
c @@@  PI     = 3.141592654
c @@@  VOL_PU = ( 4500. / 19.86 )
c @@@  HD     = 0.5 1.0  1.5  2.0  2.5  3.0 
c @@@  R_PU   = ( (VOL_PU/(2*PI*HD))**(1/3) )
c @@@  H_PU   = ( 2*R_PU*HD )
c @@@  R_H2O  = ( R_PU + 2.54 )
c @@@  KSRC_Z = ( H_PU * 0.5 )
c
c Pu cylinder:
c      mass       = 4500 g
c      density    = 19.86 g/cc
c      volume     = VOL_PU
c      radius Pu = R_PU
c      height Pu = H_PU
c      H/D        = HD
c
c H2O  outer radius = R_H2O
c
1   1 -19.860000   -1           imp:n=1
11   3 -1.0         +1 -11       imp:n=1
14   6 -7.92        -30          imp:n=1
15   0              +11 +30 -20  imp:n=1
20   0              +20          imp:n=0

1  rcc 0 0 0          0 0 H_PU   R_PU 
11  rcc 0 0 0          0 0 H_PU   R_H2O
20  rcc 0 0 -2.540000  0 0 91.44  91.44
30  rcc 0 0 -0.635000  0 0 0.635  76.20

kcode 10000 1.0 50 250
ksrc 0. 0. KSRC_Z
C ………………… etc.
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H/D

wval1, H/D = 1
mcnp6  i=wval1.txt

k = 0.83491 (41)

wval1p,  varying H/D
mcnp_pstudy -i wval1p.txt  -setup  -run

HD=0.5  case001 KEFF    7.87229E-01     KSIG    4.09191E-04
HD=1.0  case002 KEFF    8.34430E-01     KSIG    4.20175E-04
HD=1.5  case003 KEFF    8.29652E-01     KSIG    4.19130E-04
HD=2.0  case004 KEFF    8.11958E-01     KSIG    4.18723E-04
HD=2.5  case005 KEFF    7.93676E-01     KSIG    4.63720E-04
HD=3.0  case006 KEFF    7.73434E-01     KSIG    4.19664E-04

Example  wval1:  4.5 kg Pu Ingot, varying H/D   (3)
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Example

wval2,
4.5 kg Pu Annulus,

varying H & Rin
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Example wval2:  4.5 kg Pu Annulus, varying H & Rin (1)

• 4.5 kg Pu-239 right-circular cylinder, hollow 
• Pu density = 19.86 g/cm3

• Reflected radially with 1 inch of water
• Reflected on the bottom with ¼ inch steel

• Set the height to be same as solid cylinder
with height-to-diameter (H/D) = 1.0, 2.0, 3.0 

• For given height, vary inner radius over 0+ - 2 cm

– Start with wval2.txt input
mcnp6   i=wval2.txt  

– Copy wval2.txt to wval2p.txt, then insert directives for mcnp_pstudy
• Define list for solid  HD:

c @@@ HD =  1.0  2.0  3.0
• For a given H/D, compute Pu height
• Define list for inner radius  RIN_PU 

c @@@ RIN_PU =  0.001  0.5  1.0  2.0

• Then other dimensions & source

Solid cylinder

V = (Pu mass) (Pu density)

V = HπR 2 = (H/D) ⋅ 2πR 3

H = 4V (H/D)2 π⎡⎣ ⎤⎦
1/3

Hollow cylinder

V = Hπ (R
out

2 −R
in

2 )

R
out

= R
in

2 +V πH⎡⎣ ⎤⎦
1/2
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Example  wval2:  4.5 kg Pu Annulus, varying H & Rin (2)
wval2: 4500 g Pu metal ring, fixed Rin
1   3 -1.0         -1            imp:n=1
2   1 -19.860000   +1 -2         imp:n=1
11   3 -1.0         +2 -11        imp:n=1
14   6 -7.92        -30           imp:n=1
15   0              +11 +30 -20   imp:n=1
20   0              +20           imp:n=0

1 rcc 0 0 0      0 0  6.608 0.100000
2 rcc 0 0 0      0 0  6.608 3.305259
11 rcc 0 0 0      0 0  6.608 5.845259
20 rcc 0 0 -2.540 0 0 91.44  91.44
30 rcc 0 0 -0.635  0 0 0.635  76.20

kcode 10000 1.0 50 250
sdef pos=0 0 0  rad=d1 axs=0 0 1  ext=d2
si1  0.100  3.305259
sp1  -21 1
si2  0.0   6.60800
sp2  0   1
m1   94239.80c 1
m3   1001.80c 0.66667  8016.80c 0.33333 
mt3  lwtr.20t
m6   24050.80c 0.000757334

24052.80c 0.014604423 
24053.80c 0.001656024 
24054.80c 0.000412220 
26054.80c 0.003469592 
26056.80c 0.054465174 
26057.80c 0.001257838 
26058.80c 0.000167395 
25055.80c 0.00174 
28058.80c 0.005255537 
28060.80c 0.002024423 
28061.80c 0.000088000 
28062.80c 0.000280583 
28064.80c 0.000071456

prdmp 9e9 9e9 1 9e9 

wval2p: 4500 g Pu metal ring, various H & Rin
c
c @@@  PI     = 3.141592654
c @@@  VOL_PU = ( 4500. / 19.86 )
c      Pu mass    = 4500 g
c      Pu density = 19.86 g/cc
c      Pu volume  = VOL_PU
c
c set height to match ingot with various H/D
c @@@  HD     =  1.0  2.0  3.0
c @@@  HEIGHT = ( (4*VOL_PU*(HD**2)/PI)**(1/3) )
c
c for hollow cylinder:
c   use same height as for solid ingot
c   set various inner radii
c   set Rout for given height, mass, Rin
c @@@  RIN_PU = .001  0.5  1.0  2.0  
c @@@  ROUT_PU=(sqrt(RIN_PU**2+VOL_PU/(PI*HEIGHT)))
c @@@  ROUT_H2O = ( OUTER_PU + 2.54 )
c
1   3 -1.0         -1            imp:n=1
2   1 -19.860000   +1 -2         imp:n=1
11   3 -1.0         +2 -11        imp:n=1
14   6 -7.92        -30           imp:n=1
15   0              +11 +30 -20   imp:n=1
20   0              +20           imp:n=0

1  rcc 0 0 0        0 0  HEIGHT  RIN_PU
2  rcc 0 0 0        0 0  HEIGHT  ROUT_PU
11  rcc 0 0 0        0 0 HEIGHT  ROUT_H2O
20  rcc 0 0 -2.540   0 0 91.44    91.44
30  rcc 0 0 -0.635   0 0 0.635    76.20

kcode 10000 1.0 50 250
sdef pos= 0. 0. 0.   rad=d1  axs=0 0 1  ext=d2
si1  RIN_PU  ROUT_PU
sp1  -21 1
si2  0 HEIGHT
sp2  0  1
…………… etc.
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Example  wval2:  4.5 kg Pu Annulus, varying H & Rin (3)
wval2

mcnp6  i=wval2.txt

k = 0.83413 (42)

wval2p,  varying H & Rin
mcnp_pstudy -i wval2p.txt   -setup  -run

HD=1 Rin=.001 case001 KEFF    8.34752E-01  4.35668E-04
HD=2 Rin=.001 case002 KEFF    8.12612E-01  4.09516E-04
HD=3 Rin=.001 case003 KEFF    7.72725E-01  3.82627E-04
HD=1 Rin=0.5  case004 KEFF    8.20432E-01  4.01135E-04
HD=2 Rin=0.5  case005 KEFF    7.95375E-01  4.60388E-04
HD=3 Rin=0.5 case006 KEFF    7.54174E-01  3.96580E-04
HD=1 Rin=1.0  case007 KEFF    7.88497E-01  3.95026E-04
HD=2 Rin=1.0  case008 KEFF    7.62394E-01  3.90299E-04
HD=3 Rin=1.0  case009 KEFF    7.20810E-01  4.27354E-04
HD=1 Rin=2.0  case010 KEFF    7.21523E-01  4.02775E-04
HD=2 Rin=2.0  case011 KEFF    6.97954E-01  4.88269E-04
HD=3 Rin=2.0 case012 KEFF    6.64037E-01  4.88326E-04
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Advanced Topics

Tied parameters

Concurrent jobs
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Parameter Expansion   (1)

• Standard inner & outer schemes for determining job parameters
Example: c @@@  A  =   1   2

c @@@  B  =   3   4
c @@@  C  =   5   6
c @@@  D  =   7   8
c @@@  E  =   9

Outer: all combinations, 16 cases
{1,3,5,7,9}, {2,3,5,7,9}, {1,4,5,7,9}, {2,4,5,7,9},
{1,3,6,7,9}, {2,3,6,7,9}, {1,4,6,7,9}, {2,4,6,7,9},
{1,3,5,8,9}, {2,3,5,8,9}, {1,4,5,8,9}, {2,4,5,8,9},
{1,3,6,8,9}, {2,3,6,8,9}, {1,4,6,8,9}, {2,4,6,8,9},

Inner: 2 cases
{1,3,5,7, 9}, {2,4,6,8, 9}

• The inner & outer schemes for determining job parameters can be 
modified
– Often desirable to deal with groups of parameters that are varied
– 2 or more parameters can be “tied” together, to vary in an inner manner
– Tied parameter lists must have the same lengths
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Parameter Expansion   (2)
These examples assume that the -outer 
option is in effect for all parameter 
combinations

Example:
c @@@  tied = A B
c @@@  A  =   1   2
c @@@  B  =   3   4
c @@@  C  =   5   6
c @@@  D  =   7   8
c @@@  E  =   9

Cases, {A,B,C,D,E}:
{1,3, 5, 7, 9},  {1,3, 6, 7, 9},
{1,3, 5, 8, 9},  {1,3, 6, 8, 9},
{2,4, 5, 7, 9},  {2,4, 6, 7, 9},
{2,4, 5, 8, 9},  {2,4, 6, 8, 9}

Example:
c @@@  tied = A B C
c @@@  A  =   1   2
c @@@  B  =   3   4
c @@@  C  =   5   6
c @@@  D  =   7   8
c @@@  E  =   9

Cases, {A,B,C,D,E}:
{1,3,5, 7,9},  {1,3,5, 8,9},
{2,4,6, 7,9},  {2,4,6, 8,9}

Example:
c @@@  tied = A B
c @@@  A  =   1   2
c @@@  B  =   3   4
c @@@  tied = C D
c @@@  C  =   5   6
c @@@  D  =   7   8
c @@@  E  =   9

Cases, {A,B,C,D,E}:
{1,3, 5,7, 9},  {1,3, 6,8, 9},
{2,4, 5,7, 9},  {2,4, 6,8, 9}

Example:
c @@@  tied = A B C D
c @@@  A  =   1   2
c @@@  B  =   3   4
c @@@  C  =   5   6
c @@@  D  =   7   8
c @@@  E  =   9

Cases, {A,B,C,D,E}:
{1,3,5,7, 9},  {2,4,6,8, 9}
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Parameter Expansion   (3)
The -inner & -outer options can be varied for 
different parameters, and mixed with tied
parameters

Example:
c @@@  options = -inner
c @@@  A  =   1   2
c @@@  B  =   3   4
c @@@  C  =   5   6
c @@@  D  =   7   8
c @@@  E  =   9

Cases:
{1,3,5,7, 9},  {2,4,6,8, 9},

Example:
c @@@ options = -inner
c @@@  A  =   1   2
c @@@  B  =   3   4
c @@@ options = -outer
c @@@  C  =   5   6
c @@@  D  =   7   8
c @@@  E  =   9

Cases:
{1,3, 5, 7, 9},  {1,3, 6, 7, 9},
{1,3, 5, 8, 9},  {1,3, 6, 8, 9},
{2,4, 5, 7, 9},  {2,4, 6, 7, 9},
{2,4, 5, 8, 9},  {2,4, 6, 8, 9}

Example:
c @@@ options = -outer
c @@@  tied = A B
c @@@  A  =   1   2
c @@@  B  =   3   4
c @@@  tied = C D
c @@@  C  =   5   6
c @@@  D  =   7   8
c @@@  E  =   9

Cases:
{1,3, 5,7, 9},  {1,3, 6,8, 9},
{2,4, 5,7, 9},  {2,4, 6,8, 9}

Example:
c @@@  tied = A B C D
c @@@  A  =   1   2
c @@@  B  =   3   4
c @@@  C  =   5   6
c @@@  D  =   7   8
c @@@  E  =   9

Cases:
{1,3,5,7, 9},  {2,4,6,8, 9}
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Concurrent Jobs   (1)

• By default, jobs for the different cases are run sequentially
– For –run: jobs for each case are run on the current computer,

sequentially (one-at-a-time)
– For –submit: separate batch jobs are submitted for each case,

– For either –run or -submit, multiple threads can be used for the mcnp6 runs in 
each case,  by using the option   -mcnp_opts ‘tasks 8’ 

• For  Linux & Mac systems,  not Windows:
– Multiple concurrent cases can be run,  even when threads are used
– The  –ppn n option specifies the number of processes per node (ie, cases to 

be run concurrently)

• Examples:
– On a system with 24 hyperthreads, could run 6 cases at a time with 4 threads each:

mcnp_pstudy –i inp.txt -mcnp_opts ‘tasks 4’ -ppn 6 -setup –run

– For a cluster with 16 cores/node, can submit jobs with 16 cases each:
mcnp_pstudy –i inp.txt -ppn 16  -setup –submit
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Fission Matrix
&

Higher Eigenmodes

Forrest Brown
Senior Scientist, Monte Carlo Codes Group, LANL
National Lab Professor, University of New Mexico

Nuclear Criticality Safety Program 

From LA-UR-12-25156
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Fission Matrix Capability for MCNP Monte Carlo

• Introduction
– MCNP
– Higher Eigenmodes
– Green's Functions & Transport

• Fission Matrix
– Theory
– Sparse Storage
– Transport Theory

• Examples
– Homogeneous 2D Reactor
– Whole-core PWR, 2D
– Whole-core PWR, 3D  (Kord Smith)
– Advanced Test Reactor
– Spent Fuel Storage Vault

• Conclusions Carney, Brown, Kiedrowski, Martin, 
“Fission Matrix Capability for MCNP Monte Carlo”,  
Trans ANS 107, San Diego, 2012
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Introduction - Higher Eigenmodes

Vibrating strings:
• Higher modes add "tone", 

but die away quickly
• Fundamental mode persists
• Feedback, instability, nonlinear

effects, …, may excite higher modes

0

1

2

3

4

5

etc.
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• F(AàB)
– Green's function,  "here-to-there" function
– Probability that source at point A produces source at point B

• Transport theory - Peierl's equation for multiplying system

– Discretize space into blocks, or mesh regions
– Compute  F(r’àr)  with Monte Carlo
– Solve matrix eigenvalue problem for sources:

– Can also solve for higher modes

SB = SA ⋅F(A→B)
B

A

Introduction - Green's Functions & Transport Theory

 
S(r )  =   1

keff

  ⋅  d′r ⋅S(′r ) ⋅F(′r →
r )

all  ′r
∫

 


S  =   1

keff
 ⋅   F ⋅


S
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Fission Matrix
In

MCNP Monte Carlo
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Fission Matrix - Theory
• Transport equation, k-eigenvalue form 

• Define Green’s function & integral transport equation

• Multiply by νΣF, integrate over E, Ω, & initial regions (r0) & final regions (r)

Exact equations for integral source SI,      N = # spatial regions,   F is NxN matrix

 
M ⋅Ψ(


r,E,Ω̂) = 1

K ⋅
χ(E)
4π

⋅S(

r ),  

M ⋅Ψ(

r,E,Ω̂) = Ω̂ ⋅∇Ψ(


r,E,Ω̂)+ ΣT(


r,E)Ψ(


r,E,Ω̂)

− d ′E d ˆ ′Ω ΣS(

r, ′E →E, ′Ω̂ → Ω̂∫∫ )Ψ(


r, ′E , ˆ ′Ω ),

 
S(

r ) = d ′E d ˆ ′Ω νΣF(


r, ′E )Ψ(


r, ′E , ˆ ′Ω )∫∫ ,

 M ⋅G(

r0,E0,Ω̂0 →


r,E,Ω̂) = δ(


r −

r0 ) ⋅ δ(E −E0 ) ⋅ δ(Ω̂ − Ω̂0 ),

 
Ψ(

r,E,Ω̂) = 1

K ⋅ d

r0 dE0 dΩ̂0∫∫∫

χ(E0 )
4π

⋅S(

r0 ) ⋅G(


r0,E0,Ω̂0 →


r,E,Ω̂ )

SI = 1
K ⋅ FI,J ⋅SJ

J=1

N

∑  
FI,J = d


r


r∈VI
∫ d


r0


r0∈VJ
∫

S(

r0 )
SJ

⋅ dEdΩ̂dE0 dΩ̂0∫∫∫∫ ⋅ νΣF(

r,E)⋅ χ(E0 )

4π
⋅G(

r0,E0,Ω̂0 →


r,E,Ω̂)

 
SJ = S(


′r )d

′r


′r ∈VJ
∫ = d


′r d ′E d ˆ ′Ω νΣF(


′r , ′E )Ψ(


′r , ′E , ˆ ′Ω )


′r ∈VJ
∫∫∫ ,
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Fission Matrix - Theory

• FI,J  =  next-generation fission neutrons produced in region I,
for each fission neutron starting in region J      (JàI)

• In the equation for F,
– S(r0)/SJ is a local weighting function within region J
– As  VJ à 0:   

• S(r0)VJ/SJ à 1
• Discretization errors à 0
• Can accumulate tallies of FI,J  even if not converged

• FI,J   tallies:
– Previous  F-matrix  work: tally during neutron random walks
– Present   F-matrix work: tally only point-to-point, 

using fission-bank in master proc (~free)
• Eliminates excessive communications for parallel
• Provides more consistency, FI,J  nonzero only in elements with actual sites
• Analog-like treatment, better for preserving overall balance
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MCNP Criticality Calculations

Monte Carlo K-effective Calculation
1. Start with fission source & k-eff guess
2. Repeat until converged:

• Simulate neutrons in cycle
• Save fission sites for next cycle
• Calculate k-eff, renormalize source

3. Continue iterating &  tally results

For Fission Matrix calculation
During standard k-eff calculation,  at the end of each cycle:

• Estimate  FI,J tallies from start & end points in fission bank     ( ~ free )
• Accumulate  FI,J tallies,  over all cycles    (even inactive cycles)

After the Monte Carlo is complete:  
• Normalize  FI,J accumulators,  divide by total sources in J regions
• Find eigenvalues/vectors of  F  matrix  (power iteration, with deflation)
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Fission Matrix – Sparse Structure

• For a spatial mesh with N regions,  F matrix is  N x N
– 100 x 100 x 100 mesh   à F is  106 x 106 à 8,000 GB memory
– In the past, memory storage was the major limitation

• Sparse storage for F matrix 

– Don’t store zero elements,   use sparse storage scheme

– For 100x100x100 mesh, reduces F matrix storage to a few GB

3D reactor with 
15x15 spatial mesh, 
225x225  F matrix
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K-eigenvalue Form of Transport Equation
• Structure & properties

– 60 years ago:
A single, non-negative, real, fundamental 
eigenfunction & eigenvalue exist

– 50 years ago:
For 1-speed or 1-group:   A complete set of self-adjoint, 
real  eigenfunctions & discrete eigenvalues  exists

– Energy-dependent transport equation is bi-orthognal,
forward & adjoint modes are orthogonal

– Nothing else proven, always assumed that higher-mode solutions exist

• In the present work based on the Fission Matrix:

– We provide evidence that higher modes  exist,   are real,   have discrete
eigenvalues,   and are very nearly self-adjoint (for reactor-like problems)

– Approach is similar to Birkhoff’s original proof for fundamental mode

– This has never been done before using continuous-energy Monte Carlo

 
M ⋅Ψ(


r,E,Ω̂) = 1

K ⋅
χ(E)
4π

⋅S(

r )



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       442

Homogeneous 2D Reactor
Eigenmodes for:

Whole-core Model
Half-core Model

Quarter-core Model
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Eigenmodes for Homogeneous 2D Reactor

Whole Core
Model

Whole Core
Model

Half Core
Model

Half Core
Model

Quarter Core
Model

Quarter Core
Model

0 1 2 3 4 5

6 7 8 9 10 11
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Whole-core 2D PWR

Eigenvalue spectrum
Spatial Eigenmodes
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Whole-core 2D PWR Model

2D PWR (Nakagawa & Mori model)

• 48 1/4  fuel assemblies:
– 12,738 fuel pins with cladding
– 1206 1/4  water tubes for

control rods or detectors

• Each assembly:
– Explicit fuel pins & rod channels
– 17x17 lattice 
– Enrichments:    2.1%,  2.6%,  3.1%

• Dominance ratio  ~  .98

• Calculations used whole-core model,
symmetric quarter-core shown at right

• ENDF/B-VII data, continuous-energy
• Tally fission rates in each quarter-assembly

!
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PWR – Eigenvalue Spectrum & Fundamental Mode

• Fission matrix computed during MCNP k-effective inactive cycles

• Fundamental eigenmode of the fission matrix for a 2D whole-core
PWR model, for various spatial meshes used to tally the fission matrix

500 K  neutrons / cycle
Fission matrix tallies for cycles 4-55

15 x 15 mesh 30 x 30 mesh 60 x 60 mesh          120 x 120 mesh
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PWR – Eigenmodes for 120x120x1 Spatial Mesh

n         Kn
0     1.29480
1     1.27664
2     1.27657
3     1.25476
4     1.24847
5     1.24075
6     1.22160
7     1.22141
8     1.19745
9     1.19743
10   1.18825
11   1.18305
12   1.15619
13   1.14633
14   1.14617
15   1.14584
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PWR – First 100 Eigenmodes
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PWR – First 100 Eigenmodes, with More Neutrons
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Eigenvalue Spectra with Varying Meshes
Real( ki )

14400
3600

900

225
100

25

N = number of mesh regions

( Fission matrix size = N x N )

Ki

i
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Spectrum Convergence from Mesh Refinement 

# Mesh Regions           K0

5x5         =       25      1.29444
10x10       =     100      1.29453
15x15       =     225      1.29469
30x30       =     900      1.29477
60x60       =   3600      1.29479

120x120     = 14400      1.29480

K0

K1
K2

K3
K4

K5

K6
K7

K8
K9

For fine-enough spatial mesh, 
eigenvalue spectrum converges
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Are the Eigenvalues Real or Complex ?

Real( ki ):

Imag( ki ):

1 M neutrons/cycle
500K neutrons/cycle

The appearance of complex eigenvalues
appears to be strictly an artifact of 
Monte Carlo statistical noise

When more neutrons/cycle are used to
decrease statistical noise, complex 
components diminish or vanish

The first few 100s or 1000s of discrete
eigenvalues are real, and presumably
all would be with sufficiently large
neutrons/cycle

120 by 120 Spectrum, Varying  Neutrons/cycle
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PWR – Inner Products of Forward Eigenmodes

Inner products of 
forward eigenfunctions

Strictly, eigenfunctions of the transport equation are bi-orthogonal.
As shown above, forward eigenfunctions are very nearly orthogonal.
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Kord Smith 
Challenge Problem

-
3D Whole-Core PWR
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MCNP & the "Kord Smith Challenge"
Full core, 3D benchmark for assessing MC computer performance

– Specified by Hoogenboom & Martin for OECD/NEA  (2010)
– LWR model:     241 assemblies,  264 fuel pins/assembly
– Fuel contains 17 actinides + 16 fission products;     borated water
– Detailed 3D MCNP model

• Mesh tallies for pin powers,  (63,624 pins) x (100 axial) =  6.3M pin 
powers

• Runs easily on deskside computer    (Mac Pro, 2 quad-core, 8 GB 
memory)
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Standard MCNP & the "Kord Smith Challenge"
Pin Powers & Std.Dev Assembly Power 

& Std.DevAxial Mid Top

Keff & Hsrc Convergence

200M neutrons
Mac Pro, 8 cpu
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Kord Smith Challenge Eigenvalue Spectrum

21x21x20 mesh,
Real(K)  spectrum

First 15 eigenvalues for 
21x21x20 and 42x42x20 mesh
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Eigenfunctions from Fission Matrix
XY plots of eigenfunctions at various Z elevations

55 cycles,  1 M neutrons/cycle,  42x42x20 mesh,  35280x4913 fission matrix
Top of Core

Bottom of Core

0        1       2       3       4       5       6       7       8       9      10      11     12     13     14

X
Y
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Eigenvalues & Inner Products of Eigenfunctions

42 x 42 x 20 spatial mesh,     35280 x 4913 fission matrix
55 cycles, 1 M neutrons/cycle

fission matrix tallies for cycles 4-55

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

m
n

n Kn

0 0.99919
1 0.98483
2 0.98362
3 0.98469
4 0.96956
5 0.96950
6 0.96693
7 0.96591
8 0.96043
9 0.95671

10 0.95178
11 0.95078
12 0.94524
13 0.94497
14 0.94472

Inner products of eigenfunctions



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       460

Convergence Acceleration Using Fission Matrix
• Fission matrix can be used to accelerate convergence of the MCNP 

neutron source distribution during inactive cycles

• Very impressive convergence improvement

standard MC

standard MC

keff

Hsrc

accelerated using F matrix

accelerated using F matrix
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Advanced Test Reactor

Idaho National Laboratory
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Advanced Test Reactor

S. S. Kim, B. G. Schnitztler, et. al., “Serpentine Arrangement of Highly Enrichment Water-Moderated Uranium-Aluminide 
Fuel Plates Reflected by Beryllium”, HEU-MET-THERM-022, Idaho National Laboratory (September 2005).

“Serpentine Arrangement of Highly Enrichment Water-Moderated 
Uranium-Aluminide Fuel Plates Reflected by Beryllium”
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ATR - Fission Matrix Structure

Four matrix columns (100x100 spatial mesh)

Matrix structure 
(50x50 spatial mesh)
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ATR - Fundamental Eigenvector, Eigenvalues

N

Real( ki )

Fundamental mode, 
100x100 spatial mesh
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ATR - Eigenmodes (100x100 spatial mesh)
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ATR - Fission Matrix Orthogonality
n Kn

0 0.99490
1 0.85630
2 0.84612
3 0.78265
4 0.64564
5 0.55461
6 0.55207
7 0.53659
8 0.47004
9 0.46173

10 0.45794
11 0.41144
12 0.32865
13 0.29454
14 0.28401
15 0.28327

Inner products of eigenfunctions

100 x 100 x 1 spatial mesh,   no sparsification
55 cycles, 1 M neutrons/cycle

fission matrix tallies for cycles 4-55
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MCNP Fission Matrix

Spent Fuel Storage Vault
(idealized benchmark)

Loosely-Coupled
Problem
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Fuel Vault Problem
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Eigenvalue Spectrum for Fuel Vault Problem- First 360

36 semi-coupled assemblies  à Mini-groups of 36 in size

36

Real( ki ),   i = 1,2,..360



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       470

XY Eigenmodes of Fuel Vault Problem, 96 by 12 by 10

XY planes mid-height.  Axial shape is cosine, #10,13,15 have change in sign in z

mode #   
0

2

4

6

8

10

12

14

1

3

5

7

9

11

13

15
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Fuel Vault Problem - Convergence Acceleration

keff

Hsrc

It takes ~2,000 cycles for standard MC to converge for this problem,

Using the fission matrix for source convergence acceleration,
only ~20 cycles are needed

Standard MC decreases
slowly,  converges to 
same  value as F matrix 
after  ~2,000 cycles

standard MC

accelerated using 
F matrix
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Conclusions

• Fission matrix capability has been added to MCNP   (R&D for now)

• Tested on variety of real problems   (3D, continuous-energy)

• Can obtain fundamental & higher eigenmodes

– Empirical evidence for: existence of higher modes,   
real,   discrete eigenvalues,   
very nearly orthogonal eigenmodes 

(for reactor-like problems)

– Higher eigenmodes are important for 
BWR void stability, higher-order perturbation theory,
Xenon oscillations, quasi-static transient analysis, 
control rod worth, correlation effects on statistics, 
accident behavior, etc.,     etc.,      etc.

• Can provide very effective acceleration of source convergence
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On-The-Fly Neutron
Doppler Broadening

for MCNP

Forrest Brown1, William Martin2, 
Gokhan Yesilyurt3, Scott Wilderman2

1Monte Carlo Methods (XCP-3), LANL
2University of Michigan

3Argonne National Laboratory

LA-UR-12-22277
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Abstract

On-The-Fly Neutron Doppler Broadening for MCNP

Forrest Brown, William Martin, Gokhan Yesilyurt, Scott Wilderman

The University of Michigan, ANL, and LANL have been collaborating on a US-DOE-NE University 
Programs project “Implementation of On-the-Fly Doppler Broadening in MCNP5 for Multiphysics 
Simulation of Nuclear Reactors.” This talk describes the project and provides results from the initial 
implementation of On-The-Fly Doppler broadening (OTF) in MCNP and testing.

The OTF methodology involves high precision fitting of Doppler broadened cross-sections over a wide 
temperature range (the target for reactor calculations is 250-3200K). The temperature dependent fits 
are then used within MCNP during the neutron transport, for OTF broadening based on cell 
temperatures. It is straightforward to extend this capability to cover any temperature range of interest, 
allowing the Monte Carlo simulation to account for a continuous distribution of temperature ranges 
throughout the problem geometry.



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       475

On-The-Fly Neutron Doppler Broadening for MCNP

• Introduction
– Doppler Broadening - Obvious Stuff
– Methods for Handling Temperature Variations

• OTF Doppler Broadening in MCNP
– OTF Methodology
– Union Energy Mesh
– Temperature Fitting
– OTF Doppler in MCNP
– Testing
– Work-in-Progress
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238U capture
cross-section

Neutron Flux in Fuel
per unit lethargy

UO2 Fuel Pin 

3.1% Enriched
293.6 oK

.01 eV – 20 MeV

Thermal
Peak

Fission
Peak

Epithermal	Range	

• Neutrons	born	in	MeV	range	
from	fission

• Most	fissions	caused	by	
thermal	neutrons

• 1/3	of	neutron	losses	are	due	to	
238U	capture	in		epithermal	energy	
range	during	slowing	down

Introduction – Doppler Broadening
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238U capture
cross-section

Neutron Flux in Fuel
per unit lethargy

UO2 Fuel Pin 

3.1% Enriched
293.6 oK

Detail for
1 eV – 1 KeV

1/3	of	neutron	losses	
are	due	to	238U	capture	
at		epithermal	energies
during	slowing	down

Introduction – Doppler Broadening
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UO2 Fuel Pin 

3.1% Enriched
293.6 oK  vs  900 oK

.01 eV – 20 MeV

Keeping same densities,
but changing cross-sections:

kinf (cold) =  1.34498 (8)
kinf (hot)   =  1.31167 (8)

At higher temperatures,  
Doppler broadening of 
resonance cross-sections 
increases resonance capture

Introduction – Doppler Broadening

Neutron Flux in Fuel
per unit lethargy

238U capture
6.67 eV resonance
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Introduction

Doppler Broadening

Temperature Variation in 
Monte Carlo Codes
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Neutron - Nucleus  Interactions
• Low neutron energies:

– S(α,β) interaction data is used in modeling collision physics
• 2002 data: 10-5 eV  - 4.46 eV neutron energies     (15 nuclides)
• 2012 data: 10-5 eV  - 9.15 eV neutron energies     (20 nuclides)

– S(α,β) data accounts for target nucleus chemical binding, molecular 
binding, crystal structure, thermal motion, etc.

– Nuclides without S(α,β) data:    use free-gas model (see below)

• High neutron energies:
– Target nucleus thermal motion neglected
– Typical: Eneutron > 400 kT    for A>1

• Epithermal neutron energies:
– Target nucleus thermal motion important
– Free-gas scattering model -- nuclides have Maxwell-Boltzmann energy 

distribution at temperature T, isotropic direction

f(Enuc ) =
2
π
⋅
1
kT

⋅
Enuc

kT
⎛
⎝⎜

⎞
⎠⎟
1/ 2

e−Enuc / kT
Gamma( kT, 3/2 ),

mean = 1.5 kT
mode =   .5 kT
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Doppler Broadening

• Detailed kinematics of collisions must include nucleus E & Ω

• For free-flight, selection of collision isotope, & tallies of overall reactions:    
must use effective cross-sections,  averaged over  (E, Ω)  distribution of 
nuclides at temperature T

Doppler broadening equation v = neutron, V=nucleus

This is a convolution of the cross-section with the target energy or speed distribution.
Smears out & smoothes the cross-section, reduces peak values.

Free-flight distance
to next collision, s

Collision isotope,
Reaction type,
Exit E'  &  (u',v',w'),
Secondary particles

   
σ eff (v)=

|

v -

V|

v
σ(|

v -

V|)P(


V)d

V∫ ,      P(


V)= M

2πkT( )3/2
e

- M
2kT( ) V2
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238U Doppler Broadening Examples
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• ENDF/B nuclear data is represented by piecewise-linear tabulation of σ(E)

• Doppler Broadened Neutron Cross-sections

– Red Cullen (NSE, 1976) showed how to exactly perform this convolution of 
Maxwell Boltzmann PDF with piecewise-linear σ(E), called sigma1 method

– NJOY code is similar & adaptively chooses energy points to meet 0.1% 
accuracy in σeff at T

– σeff(E) has different E-mesh at different T’s

– Very compute-intensive, typically performed prior to Monte Carlo in 
preparing nuclear data libraries

Doppler Broadening - Numerics

   
σ eff (v)=

|

v -

V|

v
σ(|

v -

V|)P(


V)d

V∫ ,      P(


V)= M

2πkT( )3/2
e

- M
2kT( ) V2

σ

E

Typically, a linearization 
tolerance of 0.1% is used
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Doppler Broadening with Adaptive Energy Grid

NJOY – adaptive E grid for 238U Doppler broadening
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Temperature Variation in Monte Carlo
What if there are 1000s of T's ?

Six approaches:

1. Traditional NJOY+MC   (exact)
• NJOY data at specific problem T’s
• Each MC region in MC uses specific pre-

broadened data
• Exact,   very cumbersome, 

very large amount of xsec data

2. Traditional NJOY+MC   (approx.)
• Like (1), but round off T’s to nearest 10-20o

• Aproximate, very cumbersome, 
very large amount of xsec data

3. Stochastic Mixing   (approx)
• NJOY data at a few bounding T’s
• Set up MC input with a mix of hot & cold data 

for a nuclide, such that average T for the mix 
matches problem T

• Run MC, will sometimes get "hot" data, 
sometimes "cold", average is OK

• Approximate, cumbersome, 
very large amount of xsec data

(OTF = On-The-Fly)
4. OTF Sigma1 (Monk)

• Use only 1 set of NJOY datafiles
• During MC, use sigma1 method to broaden 

data as needed
• Exact, but very expensive,  

~10x increase in computer time

5. OTF Using Delta-Track (Serpent)
• Use only 1 set of NJOY datafiles
• During MC, use delta-tracking rejection 

method to broaden data as needed
• Exact, but complex & expensive,  

~4x increase in computer time
• Cannot do pathlength MC estimators or 

point-detector estimators

6. OTF Temp. Fitted Data (MCNP)
• Use only 1 set of NJOY datafiles
• Prior to MC, generate OTF datasets to 

handle temperature variation
• During MC, Doppler broaden as needed 

using fitting data
• Exact, extra data for T-fits,  

~1.1x increase in computer time
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(1)+(2)   Traditional NJOY+MC
• Conventional MCNP problem specification:

– Temperatures are assigned to cells (geometry regions)
– Materials are assigned to cells
– Doppler broadening for temperature T is performed on nuclides
– Materials are composed of nuclides

– Cumbersome  for 1,000+ 
cells/materials/temperatures/nuclides

– Many GB of data

(1) Exact, number of datasets = number of T’s
(2) Approx., match cell T to closest material with nuclides at T’

Cell

T Material
Nuclide 1, T

Nuclide 2, T

Nuclide 3, T

ENDF/B files, 0 K

NJOY
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(3)  Stochastic Mixing
• Often loosely called "stochastic interpolation" or "interpolation"
• This is simply mixing, not interpolation

• MCNP input example:

– Want this at 500 K:        m1000     92235  -.93      92238  -.07

– Have these datasets from NJOY:
92235.91c  at 300 K,     92238.91c  at 300 K
92235.92c  at 600 K, 92238.92c  at 600 K

– For mixing linear in T,  mix 1/3 of 300 K data + 2/3 of 600 K data

m1000 92235.91c   -.31 92238.91c   -.0233333
92235.92c   -.62 92238.92c   -.0466667

• Cumbersome  for 1,000+ 
cells/materials/temperatures/nuclides     (could be scripted…..)

• Many GB of data,   2x nuclides,   complex input
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(4) OTF Sigma1,   (5) OTF Delta,   (6) OTF for MCNP 

(4) OTF Sigma1 
– Recently implemented in MONK
– Numerical sigma1 method OTF during neutron tracking
– Increases overall runtime by ~10x
– See Davies paper from ICNC-2011

(5) OTF Delta-tracking
– Currently being tested in Serpent
– Very elegant & innovative, very promising
– Increases overall runtime by ~2-4x,  may improve
– Does not fit with many conventional MC schemes:

• No pathlength estimators
• No point-detector (flux at a point) tallies
• Requires radical revisions to codes such as MCNP

– See Viitanen & Leppanen paper from PHYSOR-2012

(6) OTF for MCNP  -- rest of talk
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OTF Doppler Broadening
-

U. Michigan + ANL + LANL
DOE NE-UP Project

OTF Methodology
Union Energy Mesh
Temperature Fitting

OTF Doppler in MCNP
Testing

Work-in-Progress
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On-The-Fly Neutron Doppler Broadening
• OTF Methodology  (for each nuclide)

– Create union energy grid for a range of temperatures
– Create fits for σeff(T,E), for range of temperatures, on union E-grid
– MCNP – evaluate σeff(T,E)  OTF during simulation

• Comments
– Target application, for now:       reactors

– Relies on NJOY methodology
• Supplements & extends NJOY
• Methodology consistent with NJOY

– Fitting  σ vs temperature    (at each E)
• High precision, least squares with singular value decomposition
• Adaptive       (for each E, MT, & nuclide)
• Explicit, direct error checking for fits - fit error < linearization tolerance
• Threaded parallel,  broadening routines called millions of times
• Over temperature, maintains accuracy consistent with NJOY 
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OTF Methodology – Union Energy Grid   (1)
• 238U energy grid,  35-36 eV, various temperatures   (ENDF/B-VII.0)

NJOY adapts the energy grid (for each nuclide, at given T) 
to preserve linearization tolerance

Temperature (K)          Number of E pts
293.6 157754
600 133964
900 122581

1200 115361
2500 99631

T

E

Union E-grid:
Need to determine 1 energy grid 
(for each nuclide) that preserves 
linear interpolation tolerance in E 
over the entire T range
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OTF Methodology – Union Energy Grid
• For 1 nuclide, determine:

– MT numbers for reactions to be broadened
– Energy range for broadening,  Emin - Emax

• Up to start of unresolved data, or high-threshold reactions (whichever smaller)
– Temperature range Tmin – Tmax & interval ΔT for tolerance testing (input)
– Base set of σx(e)’s from NJOY at Tbase

• “x” = any MT reaction that needs broadening
• ACE data file from NJOY: Yesilyurt:  Tbase=0 K,      Brown:  Tbase=293.6 K

– Energy grid from NJOY at Tmin

• For 1 nuclide & a set of T’s in range, at each T:
– Adaptively add E points so that 0.1% linear tolerance is maintained

• Exact Doppler broadening from Tbase to T, using sigma1 method
• Check all broadened MT reaction data for each E interval
• Subdivide E interval until 0.1% linearization tolerance met for  all  MT’s
• Add E points as needed, do not remove E points

– Compute-intensive – millions of calls to sigma1 routine, parallel threads
– Typically expands number of E points by ~10%, for  293-3200 K range
– Result:    union E-grid for nuclide,  0.1% linear tolerance over entire T range
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OTF Methodology – Doppler Broadening vs Temperature

Functional forms for temperature fitting based on multilevel
Adler-Adler model,   with expansions for peak, mid-res, wings

 

Near resonance peaks:

σT,C,F(T)  dk

Tk/ 2
k=0

∞

∑

 

Mid resonance:

σT,C,F(T)  ekTk/ 2

k=0

∞

∑

 

Wings of resonance:

σT,C,F(T)  fkTk

k=0

∞

∑

Combined functional form:

σT,C,F(T) ~
ak
Tk/ 2

k=1

n

∑ + bkT
k/ 2 + c

k=1

n

∑

• for specific  E, MT 
• n varies for E, MT 
• ak, bk, c tabulated for E, MT

E
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OTF Methodology – Fitting vs T

• For 1 nuclide, determine:
– MT numbers for reactions to be broadened
– Energy range for broadening,  Emin - Emax

• Up to start of unresolved data, or high-threshold reactions (whichever smaller)
– Temperature range Tmin – Tmax & interval ΔT for tolerance testing (input)
– Base set of σx(e)’s from NJOY at Tbase

• “x” = any MT reaction that needs broadening
• ACE data file from NJOY: Yesilyurt:  Tbase=0 K,     Brown:  Tbase=293.6 K

– Union energy grid for this nuclide & T range
– Maximum order for temperature fitting

• Adler-Adler based functional form, using powers of T1/2 and 1/T1/2

• For 1 nuclide, at each point in the union E grid:
– Exact Doppler broadening from Tbase to all T’s in range, using sigma1 method
– Least-squares fitting over T

• Singular value decomposition, least squares for temperature dependence
• Fitting order chosen adaptively for each energy & reaction so that fits accurate 

within 0.1% for all T’s and all E’s in range, for all MT’s
– Coefficients saved in files for MCNP use
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OTF Methodology – MCNP OTF

• At problem setup, read in OTF data for various nuclides
– Each OTF nuclide set can have different fit orders & union E-grid & reactions

• During simulation, if neutron in E-T range of fits
– Use OTF data for each nuclide to create on-the-fly Doppler broadened cross-

sections at current cell temperature
– If outside E-T range of OTF data, use standard ACE data
– Collision physics (exit E & angles) uses standard ACE data

• Only need to generate OTF datasets once, & then use for any problems

• Cost
– Extra storage for OTF data
– Extra computing for evaluating OTF functions        (typical <10% runtime)

• Benefit
– Less storage for ACE data (no need for multiple temperatures)
– Can solve problems with 1000s of T’s or more, no limit
– Greatly simplifies problem setup 
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OTF Testing - Yesilyurt
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238U Capture – NJOY vs OTF at 2000 K

Cross-sections from NJOY & OTF match within
linearization tolerance 0.1% at all energies
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NJOY vs OTF 238U Capture Cross-Section
• NJOY vs OTF at 1000 K

(curves with higher peak)

• NJOY vs OTF at 2000 K
(curves with lower peak)

Cross-sections from NJOY & OTF 
match within linearization tolerance 
0.1% at all energies

6.67 eV resonance

20.9 eV resonance 36.6 eV resonance
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MCNP Test Results – Doppler Defect Benchmark

• Doppler Reactivity Benchmark
– Compare k-effective for HZP (hot, zero power) and HFP (hot, full power) 

conditions for a unit fuel cell typical of a PWR
– Basic model:

• PWR fuel pin cell with reflecting BCs,   various enrichments
• HZP cases:    fuel at 600K,   clad/moderator at 600K
• HFP cases:    fuel at 900K,   clad/moderator at 600K
• Uniform temperature within each fuel, clad, moderator region. 
• Number densities and dimensions adjusted for the HFP thermal expansion
• 5M active neutron histories per each of 28 MCNP runs

– NJOY+MCNP: NJOY-broadened data at exact temperatures
– OTF+MCNP: OTF data for   16O,  234U,  235U,   238U  in fuel

– OTF details
• For union E-grid:    Tbase=293.6K, T range 300-1000K,   ΔT=100K
• For OTF fitting:       8th order, T range 300-1000K, ΔT=10K
• For general production use, would use larger T range & smaller ΔT’s
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Doppler Defect Benchmark Results
HZP HFP Doppler Coef.

pcm/K
UO2 fuel pin NJOY+MCNP 0.66556 (18) 0.65979 (19) -4.38 (.20)
0.711% enrichment OTF+MCNP 0.66567 (18) 0.66022 (19) -4.13 (.20)

UO2 fuel pin NJOY+MCNP 0.96094 (26) 0.95293 (25) -2.92 (.13) 
1.60% enrichment OTF+MCNP 0.96026 (24) 0.95283 (23) -2.71 (.13)

UO2 fuel pin NJOY+MCNP 1.09912 (27) 1.08997 (26) -2.55 (.10)
2.40% enrichment OTF+MCNP 1.09923 (27) 1.08975 (28) -2.64 (.10)

UO2 fuel pin NJOY+MCNP 1.17718 (27) 1.16744 (27) -2.36 (.09) 
3.10% enrichment OTF+MCNP 1.17703 (30) 1.16767 (30) -2.27 (.10)

UO2 fuel pin NJOY+MCNP 1.23967 (27) 1.22920 (30) -2.29 (.09)
3.90% enrichment OTF+MCNP 1.23953 (29) 1.22979 (29) -2.13 (.09)

UO2 fuel pin NJOY+MCNP 1.27501 (30) 1.26526 (27) -2.01 (.09)
4.50% enrichment OTF+MCNP 1.27534 (29) 1.26552 (29) -2.03 (.09)

UO2 fuel pin NJOY+MCNP 1.29901 (31) 1.28920 (29) -1.95 (.08)
5.00% enrichment OTF+MCNP 1.29907 (28) 1.28938 (29) -1.93 (.08)

ρ =  (  1 / KHZP - 1 / KHFP ) x  105 / 300       pcm/K
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Results – Fuel Assembly  I

• Simplified PWR 15 x 15 fuel assembly

– From OECD/NEA fuel storage vault benchmark
• Fuel = 900 K
• Clad & water  = 600 K
• Outer iron rack = 293.6K

– Standard NJOY+MCNP5:  
• 900K   ACE data for fuel,
• 600K   ACE data for clad & mod
• 293.6K ACE data for iron

– OTF+MCNP5
• use 293.6K ACE data for all nuclides
• OTF data for all nuclides (except iron)

– MCNP5
• 20,000 neutrons/cycle,
• 10 inactive cycles, 1000 active cycle
• Reflecting BCs
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Results - Fuel Assembly  I

• K-effective
– NJOY+MCNP5: 1.13891 (15)
– OTF+MCNP5: 1.13892 (15)

• Total Fission
– NJOY+MCNP5: 0.464506 (.02%)
– OTF+MCNP5: 0.464499 (.02%)

• Total Capture in fuel
– NJOY+MCNP5: 0.250912 (.02%)
– OTF+MCNP5: 0.250918 (.02%)

• U235 capture in fuel
– NJOY+MCNP5: 0.089478 (.02%)
– OTF+MCNP5: 0.089475 (.02%)

• U238 capture in fuel
– NJOY+MCNP5: 0.160302 (.03%)
– OTF+MCNP5: 0.160311 (.03%)

• O16 capture in fuel
– NJOY+MCNP5: 9.73621e-4 (.11%)
– OTF+MCNP5: 9.73248e-4 (.11%)
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Results – Fuel Assembly II

• Simplified PWR 15 x 15 fuel assembly, with varying temperatures

– From OECD/NEA fuel storage vault benchmark
• Fuel = 900 K, 600 K, 300 K
• Clad = 900 K, 600 K, 300 K
• Water = 600 K, 300 K
• Outer iron rack = 293.6K

– Standard NJOY+MCNP5:  
• ACE data at explicit temperatures

– OTF+MCNP5
• use 293.6K ACE data for all nuclides
• OTF data for all nuclides (except iron)

– MCNP5
• 20,000 neutrons/cycle,
• 10 inactive cycles, 1000 active cycle
• Reflecting BCs Fuel=900K, clad=900K, mod=600K

Fuel=600K, clad=600K, mod=600K
Fuel=300K, clad=300K, mod=300K
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Results – Fuel Assembly II
k-effective:

STD 1.11599  (15)  
OTF 1.11592  (15)

900K 600K 300K
Total fission

STD  .045140 (.08%)  .161186 (.04%)  .248782 (.03%)
OTF  .045081 (.08%)  .161329 (.04%)  .248731 (.03%)

Total capture in fuel
STD .027672 (.09%)  .096276 (.05%)  .116745 (.04%)
OTF .027667 (.09%)  .096268 (.05%)  .116829 (.04%)

U235  capture in fuel
STD .008993 (.08%)  .031910 (.04%)  .045998 (.03%) 
OTF  .008983 (.08%)  .031932 (.04%)  .045987 (.03%)  

U238  capture in fuel
STD  .018547 (.11%)  .063887 (.06%)  .070236 (.05%)
OTF  .018551 (.11%)  .063858 (.06%)  .070332 (.05%)

O16   capture in fuel
STD 1.15E-04 (.23%) 4.18E-04 (.14%) 4.37E-04 (.13%)
OTF 1.15E-04 (.23%) 4.16E-04 (.14%) 4.37E-04 (.13%)

Fuel=900K, clad=900K, mod=600K
Fuel=600K, clad=600K, mod=600K
Fuel=300K, clad=300K, mod=300K
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OTF Work in Progress

• Better integration into MCNP     (optimization)

• FIT_OTF fitting program
– Investigate scaling & Chebychev, for better numerical stability
– Investigate regression, to vary fit order by energy & reaction [done]

• U. Michigan work
– Create OTF libraries for all nuclides in ENDF/B-VII.0
– Test various applications:  fuel assemblies, 3D whole core, LWR, HTGR, ...

• Methodology for Unresolved Resonances & S(α,β) data
– Probable 1st cut – tables with temperature interpolation
– Possible thesis topic for PhD student

• Implement corrected free-gas scatter model
– Demonstrated, needs robust implementation

• Easy to extend to any temperature range
– Need to investigate broadening for high-threshold reactions
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Fit_OTF Example (1)

====================================================================
=  Fit_OTF:  Command-line options:
=
=       perform_fitting  =  T
=
=       zaid             = 92238.70c 
=       ace_file         = 
=       ugrid_file       = ugrid_92238.70c.txt
=       otf_file         = otf_file.txt
=       fit order min    =            1
=       fit order max    =            8
=       fit   min temp   =    293.600000000000       (if > ACE temp)
=       fit   max temp   =    1000.00000000000     
=       fit   inc temp   =    10.0000000000000     
=
=       print n-th lines =           20
=
=       create ugrid     =  F
=
=       testing?         =  T
=       test_emin        =   5.500000000000000E-006
=       test_emax        =   7.500000000000000E-006
====================================================================
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Fit_OTF Example (2)

.....read ACE file = 
92238.70c

xsdir = /Volumes/fbb/fbrown/LANL/MCNP_DATA/xsdir
file  = /Volumes/fbb/fbrown/LANL/MCNP_DATA/endf70j

................................................................................
Info from ACE data file for ZAID = 92238.70c 

Number of energies  =   157754
Atomic weight ratio = 236.005800 amu
Temperature         =  2.530100E-08 MeV,     293.6 K
Date                = 08/25/07  
Info                = 92-U -238 at 293.6K from endf/b-vii.0 njoy99.248                      
endf MAT            = mat9237   

MT reactions (std+gpd+mtlist), n= 52
1  101    2  301  202   16   17   18   37   51
52   53   54   55   56   57   58   59   60   61
62   63   64   65   66   67   68   69   70   71
72   73   74   75   76   77   78   79   80   81
82   83   84   85   86   87   88   89   90   91
102  444

MT reactions for fission, n=  1
18

URR-probability tables are present
energy range:  2.000001E-02 MeV - 1.490287E-01 MeV

Doppler broadening info:
energy range:  1.000000E-11 MeV - 2.000001E-02 MeV
MT reactions for Doppler broadening, n=  8

1  101    2  301  202   18  102  444
................................................................................
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Fit_OTF Example (3)

.....read ugrid

.....  ugrid e pts =       168626

.....  ugrid min e =   9.999999999999999E-012

.....  ugrid max e =   2.074926000000000E-002

Broadening & fitting info:

number of ugrid pts =   168603

min energy          =  1.000000E-11 MeV

max energy          =  2.000001E-02 MeV

number of temps     =       71

min temp            =    293.6 K

max temp            =    993.6 K

temp increment      =     10.0 K

number of reactions =   8

MT numbers          =     1  101    2  301  202   18  102  444

MT for tot fission  =  18

fitting order is variable, to meet tolerance

min order         =   1

max order         =   8

max number coefs  =  17
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Fit_OTF Example (4)

MT-order for kprt lines. Errors given if >tolerance.

k=   460, e=  5.60999     ev:     1-1  101-2    2-3  301-1  202-4   18-1  102-5  444-1

k=   480, e=  6.03017     ev:     1-2  101-3    2-4  301-1  202-5   18-1  102-6  444-1

k=   500, e=  6.28893     ev:     1-2  101-3    2-4  301-1  202-5   18-1  102-6  444-1

k=   520, e=  6.41344     ev:     1-4  101-5    2-6  301-1  202-7   18-1  102-8  444-1

k=   540, e=  6.47134     ev:     1-4  101-5    2-6  301-1  202-7   18-1  102-8  444-1

k=   560, e=  6.50794     ev:     1-4  101-5    2-6  301-1  202-7   18-1  102-8  444-8

k=   580, e=  6.53025     ev:     1-4  101-5    2-6  301-1  202-7   18-1  102-8  444-8

k=   600, e=  6.55195     ev:     1-3  101-4    2-5  301-1  202-6   18-1  102-7  444-8

k=   620, e=  6.57375     ev:     1-4  101-5    2-6  301-1  202-7   18-1  102-8  444-8

k=   640, e=  6.59798     ev:     1-3  101-4    2-5  301-1  202-6   18-7  102-8  444-8

k=   660, e=  6.65659     ev:     1-3  101-4    2-5  301-1  202-6   18-7  102-8  444-8

k=   680, e=  6.70483     ev:     1-3  101-4    2-5  301-1  202-6   18-7  102-8  444-8

k=   700, e=  6.76322     ev:     1-4  101-5    2-6  301-1  202-7   18-1  102-8  444-8

k=   720, e=  6.79844     ev:     1-3  101-4    2-5  301-1  202-6   18-1  102-7  444-8

k=   740, e=  6.85025     ev:     1-4  101-5    2-6  301-1  202-7   18-1  102-8  444-8

k=   760, e=  6.89968     ev:     1-3  101-4    2-5  301-1  202-6   18-1  102-7  444-1

k=   780, e=  6.98755     ev:     1-3  101-4    2-5  301-1  202-6   18-1  102-7  444-1

k=   800, e=  7.18240     ev:     1-2  101-3    2-4  301-1  202-5   18-1  102-6  444-1

>>>>> e-points/minute = 3624.46836348410
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Fit_OTF Example (5)

Overall error checks:
mt=  1  max-err= 0.100%     for   e=  2883.54     eV,  t=  303.6 K

mt=101  max-err= 0.100%     for   e=  5967.96     eV,  t=  313.6 K

mt=  2  max-err= 0.097%     for   e=  20.2401     eV,  t=  313.6 K
mt=301  max-err= 0.079%     for   e=  7089.62     eV,  t=  313.6 K

mt=202  max-err= 0.026%     for   e=  2664.37     eV,  t=  313.6 K
mt= 18  max-err= 0.002%     for   e=  723.161     eV,  t=  333.6 K

mt=102  max-err= 0.005%     for   e=  4264.86     eV,  t=  333.6 K
mt=444  max-err= 0.000%     for   e=  20.6344     eV,  t=  333.6 K

Overall maximum error               =  0.100%

Number of energies with err > 0.10% =      0

nctot_max =     22930008

nctot     =     11074134
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Monte Carlo
Depletion Tutorial

• Overview
• Timesteps
• Geometry & Depletion
• Materials & Nuclide Setup
• Cross-section Treatment
• Criticality & Depletion
• Concerns - Accuracy
• Error Propagation

From:  FB Brown, WR Martin, RD Mosteller,  "Monte Carlo - Advances and Challenges",
PHYSOR'08 Monte Carlo Workshop,  LA-UR-08-03328 (2008)
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Introduction

• There are now many Monte Carlo depletion systems
• MONTEBURNS - MCNP + ORIGEN
• MCODE - MCNP + ORIGEN
• MCOR - MCNP + ORIGEN
• MCNPX - MCNPX with built-in CINDER90
• MCNP-ACAB - MCNP + ACAB
• ALEPH - MCNP + ORIGEN
• BGCore - MCNP + SARAF
• OCTOPUS - MCNP + ORIGEN or FISPACT
• SCALE - KENO + ORIGEN
• SERPENT,  PSG - standalone, or with ABURN 
• MVP-BURN
• McCARD
• MCB
• MC21, RCP, RACER

• This tutorial provides an overview of Monte Carlo depletion, to help 
researchers & code users interpret the details & differences in the different 
MC depletion codes
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Introduction

• Monte Carlo depletion papers at the PHYSOR-2008 conference

Christos Trakas, François Thibout, Sebastien Thareau, Bernard Verboomen, 
Gert Van den Eynde,  "Benchmark of ALEPH and Monteburns on 
French post-irradiation experiments"

Hyung Jin Shim, Ho Jin Park, Han Gyu Joo, Yeong-il Kim, Chang Hyo Kim 
"Uncertainty Propagation in Monte Carlo Depletion Analysis"

Emil Fridman, Eugene Shwageraus, Alex Galperin, "Implementation of 
multi-group cross-section methodology in BGCore MC-depletion 
code"

Michael Fensin, John Hendricks, Samim Anghaie, " MCNPX 2.6 depletion 
method enhancements and testing"
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Introduction

• Monte Carlo depletion calculations - basic idea

1. Monte Carlo calculation at a fixed time, t0
• All geometry, number densities, temperatures, cross-sections must 

be constant
• Keff eigenvalue calculation, normalized to required power level
• Determine absorption rates, fission rates, fluxes for all depletable 

regions

2. Depletion calculation for  Δt = t1 - t0
• Using number densities, absorption rates, fission rates, fluxes from 

(1), determine new number densities at time t1
• Must account for fission product & actinide  buildup/burnout
• May assume constant flux over Δt,    or constant power

➜ Repeat (1) & (2) for each time step

Sounds straightforward, but there are many, many subtleties & 
complications
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Definitions

Nk =   N( tk )
= vector of all the number densities for each isotope of every region 

in the problem at time tk

φk =  φ ( tk )  =  φ ( Nk )
= Monte Carlo Keff calculation of fluxes φk, absorption rates Ak, 

fission rates Fk for all isotopes in all regions of problem at time tk, 
normalized to a specified reactor power level

Bk = B( tk, Δt, Nk, φ, A, F, λ) 
= burnup calculation from time  tk to   tk+Δt,

using Nk, φk, Ak, Fk, λk

Solve 1 region at a time, using φ, A, F for the region from MC

ORIGEN:  Nk+1 = exp{ -DkΔt } Nk, where  Dk is a matrix of A, F, λ for each isotope in region at time tk

CINDER:    Coupled linear chains of ODE's involving A, F, λ for each isotope in region at time tk
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Simple MC Depletion

• During a timestep Δt, if fluxes are constant, 
then  N, A, F  change during the step  

• Need very small Δt to get accurate results

N0

φ0 B0

N2N1

φ1 B1
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Predictor-Corrector Scheme for MC Depletion

• Predictor: MC at start, deplete to end-of-step, MC at end-of-step
• Corrector:    deplete again, using average beginning- & end- flux 

• Better accuracy,  can use much longer time steps
• 2 MC's & 2 depletions per timestep
• Other prescriptions could be used for corrector flux, φJ,C (eg, linear, …)
• Could iterate until predictor-corrector N's are close

N2

φ1,P

B0,C(φ0,C) 

φ0,C = (φ0+ φ1,P)/2

N0

φ0 B0,P N1,P

φ2,P

B1,C(φ1,C) 

φ1,C = (φ1+ φ2,P)/2

N1

φ1 B1,P N2,P

Note:  For some depletion systems, computer time is 
reduced by ~50% by assuming that φJ ≈ φJ,P
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Geometry & Depletion

• Must choose geometry regions fine enough to represent spatial 
detail need for accurate depletion
– MC fluxes, absorption, fission are tallied for a region (uniform)
– Material nuclides within a region are depleted uniformly

• Example - CASMO regions for a fuel assembly

• Most MC depletion codes can't handle this level of detail (yet) for 
the entire reactor

• If the depletion regions are too large, errors will be introduced
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Materials & Nuclide Setup
• Material compositions

– At BOL,  fission products & actinides are 
not present

– Later timesteps must include them
– Generally, must specify trace amounts of 

all FPs & actinides at BOL
– Some MC depletion codes have built-in 

options, others don't

• Cross-sections
– ENDF/B-VII has yield data for 1325 FPs
– ENDF/B-VII has datasets for only 390 

nuclides

– Only nuclides with MC cross-sections can 
be included in the MC simulation

– All others must be treated outside of the 
MC

List of all nuclides
U235
U238
O
…
Xe135
Sm149
…

Fuel mat - A
U235
U238
O
…

Fission products
Xe135
Sm149
…..

Actinides
Pu239
Pu240
…..

Decay & Other
Reaction Products

…..
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Cross-section Treatment
• For depletion calculation, just need 

overall (1-group) absorption & 
fission in each nuclide
– These can be computed directly in the 

MC, if cross-sections are available

• For nuclides without MC cross-
sections
– Can tally multigroup fluxes in each 

material
– Outside of the MC - can fold together 

multigroup MC fluxes & multigroup 
cross-sections
Cinder90 has its own multigroup library 

with 3400 nuclides (63-group) & 1325 FP 
yields

ORIGEN2 has 1-group xsecs for 1700 
nuclides & 850 FP yields 

ORIGEN-S has 1-group xsecs for 1946 
nuclides & 1119 FP yields

Monte Carlo
calculation

List of all nuclides
U235  
U238
O
…
Xe135
Sm149
… Nuclides with

MC xsecs

1-grp A, F, NF
U235
U238
…

MG φ's

Multigroup 
Xsec library

Nuclides without
MC xsecs

Collapse
Nσφ

1-grp A, F, NF
…
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Criticality & Depletion

• Depletion should be performed with a flux distribution corresponding to a 
critical system
– Real reactors are critical & deplete with a flux distribution corresponding to Keff=1
– If Keff≠1 in the Monte Carlo, subsequent depletion would use the wrong fluxes 
– Lattice physics codes (eg, CASMO) perform a buckling search so that Keff=1, & the 

depletion is performed with the critical fluxes
– Not clear what to do for MC depletion

• Choices
– Deplete anyway.  

• For comparisons, turn off buckling search in lattice codes for consistency.  
(wrong, but consistent)

– For portions of the reactor (eg, assemblies, unit cells), use albedo 
boundary conditions to get the correct leakage (in/out, energy-dependent) 
so that Keff=1
• Some MC codes don't allow albedo BCs (eg, MCNP)
• Getting the albedo BCs is a difficult computational problem

• This is an area that needs ideas & work …..
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Concerns - Accuracy

• Timesteps
– Should have short 1st  timestep (~1 day),  to allow Xe135 to build up to equilibrium
– Should have short 2nd timestep (~4-5 days), to allow Sm149 to build up to equilib.
– Some codes avoid the 2 short steps by automatically handling equilibrium Xe & Sm

– If timesteps are too long, results will not be accurate
• Ideally, should run entire depletion lifestudy several times, reducing the 

timestep sizes until results show convergence
• This is rarely done.   
• Adequate timestep sizes could be investigated using CASMO/SIMULATE or 

other codes, rather than with Monte Carlo

• Geometry & depletion regions
– MC materials & tallies are constant within a region
– Must subdivide depletable regions enough so that step-wise approximation to 

materials & fluxes is acceptable
– May require 4-10 regions per fuel pin, or 10-40 regions per poison pin,  rather than 

just 1
– If the geometry of depletable materials is too coarse, results will not be accurate
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Concerns - Accuracy

• Fission products
– Need ~300 FPs in Monte Carlo
– If that many FPs cannot be used, should consider some sort of lumped 

fission product approach for the "missing" FPs
• Could assume residual FP xsecs have simple behavior (eg,  1/v in thermal 

range & constant in fast range) and lump them into 1, 2, or more lumps for the 
MC 

• Could use a multigroup background FP library, typically generated with a 
lattice physics code (eg, CASMO)

• …..
• Normalization

– Need to normalize the MC calculations to the correct power level
– See other parts of this workshop regarding normalization
– Difficulties

• Straight neutron MC doesn't account for gamma transport & heating; must 
assume local fission energy deposition

• MCNP only includes prompt energy from fission in Q values; need corrections
• Should normalize total (prompt) fission energy from MC to total (prompt) 

fission energy of real problem
(note:  MCNP manual suggests normalizing neutron source rate, rather than the resulting fission rate)
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Concerns - Accuracy

• Regardless of timesteps, geometry, & fission products

– Because of the many materials, nuclides per material, & tallies, the MC 
part of MC depletion runs much longer than normal,  sometimes ~10x 
longer

– While it is tempting to compensate by running fewer cycles & fewer 
neutrons/cycle in the MC,     BEWARE:

• Must discard enough initial cycles of each MC calculation to assure 
fission source distribution has converged before tallies start

• Must run sufficient cycles after convergence to achieve acceptable 
statistics

• Must run enough neutrons/cycle to assure that phase-space is 
reasonably covered by enough neutrons
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Error Propagation

• Uncertainties in input for MC calcs:
– Cross-sections (all calculations)
– Number densities (depletion calculations)

• How do uncertainties in input affect results & std-dev's ?

• Three basic approaches:
– Brute force - sample input params, run calc.;  repeat many times
– Sensitivity/Uncertainty analysis - needs adjoints
– Perturbation theory approach

• Outstanding paper on error propagation in MC depletion:
N. Garcia-Herranz, O. Cabellos, J. Sanz, J. Juan, J.C. Kuijper, "Propagation of statistical 

and nuclear data uncertainties in Monte Carlo burn-up calculations", Annals of 
Nuclear Energy 35, 714-730 (2008)
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Error Propagation

• From paper by Garcia-Herranz, et al.

To compare the impact of the statistical errors in the calculated flux 
with respect to the cross uncertainties, a simplified problem is 
considered, taking a constant neutron flux level and spectrum. It is 
shown that, provided that the flux statistical deviations in the Monte 
Carlo transport calculation do not exceed a given value, the effect of 
the flux errors in the calculated isotopic inventory are negligible (even 
at very high burn-up) compared to the effect of the large cross-section 
uncertainties available at present in the data files.

• My experience --
– If you run many instances of an entire MC depletion lifestudy, the 

general trajectories of Keff & number densities are the same, with 
superimposed noise

– Overall results & trajectories are not sensitive to the fluctuations in 
number densities - if something is too low in one step, it will recover in 
the next

– Never observed any kind of nonlinear behavior
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HTGR Modeling

HTGR Modeling with MCNP5
MCNP5 Stochastic Geometry
HTGR Physics & Modeling
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Outline

• Introduction

• HTGR Modeling with MCNP5
– MCNP Geometry - Universes, Lattices
– HTGR Models - Fuel Kernels, Compacts, Pebbles, Core

• MCNP5 Stochastic Geometry
– Random Translations for Stochastic Universes
– Discussion & Limitations

• HTGR Physics & Modeling
– Fuel Kernel Modeling
– Stochastic Effects
– Compact or Pebble Modeling
– Full-core Calculations

• Conclusions
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Introduction
• High Temperature Gas-Cooled Reactor

– One of the Next Generation Reactors  ("Gen-IV")
– Coolant temperatures above 900 C,   fuel temperatures above 1250 C

• Higher energy conversion efficiency
• Thermochemical hydrogen production

– Fuel kernels with several layers of coatings
• Contain fission products
• Safety aspects …

• Two types of Reactor Design
– Prismatic fuel type reactor design, with fuel "compacts"
– Pebble bed fuel type reactor design
– Double Heterogeneity problem

• Fuel kernels inside fuel compacts or pebbles in the core
• Fuel kernels randomly located within fuel elements
• Challenging computational problem

• Monte Carlo codes can faithfully model HTGRs
– Full 3D geometry
– Multiple levels of geometry, including embedded lattices
– Random geometry ?????
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TRISO Coated Fuel Particles: 
• Lots of cladding - extremely strong
• Little fuel - fully encapsulated 

Each fuel particle forms a separate pressure  
containment vessel for the fuel kernel
Fuel concept is same for block or pebble bed

Fuel Kernel
Ceramic Coatings

PARTICLES COMPACTS FUEL BLOCK CORE

TRISO Coated Fuel Particles
---

---
---

---
~1

 m
m

 --
---

---
-

(From INL)
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TRISO Coated Fuel Particles - Burnup

TRISO Fuel
- Fission product 
gases trapped within 
the layers of coatings

- Coatings remain 
intact, even with very 
high burnup

Fresh TRISO Fuel

(From General Atomics)

Very High Burnup
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HTGR Modeling
With MCNP5
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Embedded Geometry - Universes

• In most real-world applications, there is a need for modeling 
detailed geometry with many repeating units

• All production Monte Carlo codes provide capabilities for multiple 
levels of nested geometry
– Called universes & lattices in MCNP

– A collection of cells may be grouped into a universe

– Universe may be embedded in another cell, 
with the universe  'clipped'  by the cell boundaries
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Prismatic HTGR
Plukiene, R. and Ridikas, D.,  
Modelling of HTRs with Monte Carlo: 
from a homogeneous to an exact 
heterogeneous core with 
microparticles. Annals of Nuclear 
Energy 30, 1573-1585 (2003).

kernelscompactassemblyactive core

core
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Pebble Bed HTGR

Difilippo, F.C., Monte Carlo 
Calculations of Pebble Bed 
Benchmark Configurations of 
the PROTEUS Facility. Nucl. 
Sci. Eng. 143, 240-253 
(2003).

Fuel kernelFuel kernel latticePebbles

Core
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Core Assembly

CompactKernel

Very High Temperature Gas-cooled Reactor
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MCNP5
Stochastic Geometry
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MCNP Models for HTGRs

• Existing MCNP geometry can handle:
– 3D description of core

– Fuel compacts or lattice of pebbles
• Typically, hexagonal lattice with close-packing of spherical pebbles
• Proteus experiments: ~ 5,000 fuel pebbles

~ 2,500 moderator pebbles

– Lattice of fuel kernels within compact or pebble
• Typically, cubic lattice with kernel at center of lattice element
• Proteus experiments: ~ 10,000 fuel kernels per pebble

~ 50 M    fuel kernels, total

– Could introduce random variations in locations of a few 
thousand cells in MCNP input,  but not a few million.

– See papers by:     Difilipo,   Plukiene et al,  Ji-Conlin-Martin-Lee,  etc.
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MCNP5 Stochastic Geometry

• When a neutron enters a new lattice element, a transformation is 
made to the neutron's position & direction to the local coordinates 
of the universe embedded in that lattice element.  [standard 
MCNP]

• Users can flag selected universes as "stochastic"    [new]
– A neutron entering a lattice element containing a stochastic universe 

undergoes the normal transformations.

– Then, additional random translations are made:

– Then, tracking proceeds normally, with the universe coordinates fixed 
until the neutron exits that lattice element

x← x + (2ξ1 −1) ⋅ δx
y← y + (2ξ2 −1) ⋅ δy
z← z + (2ξ3 −1) ⋅ δz
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MCNP5 Stochastic Geometry

• Neutron on lattice edge, about to enter embedded universe

• Embedded universe, 
before random translation after random translation

• Track normally, until neutron exits the lattice element
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MCNP5 Stochastic Geometry

• On-the-fly random translations of embedded universes in lattice
– Does not require any extra memory storage
– Very little extra computing cost -

only 3 random numbers for each entry into a stochastic universe

• For K-effective calculations (KCODE problems)
– If fission occurred within fuel kernel, should have source site in next 

cycle be at same position within fuel kernel
– Need to save                 along with neutron coordinates in fission bank
– On source for next cycle, apply                  after neutron pulled from 

bank

• To preserve mass exactly,  rather than on the average 
stochastically, must choose                so that fuel kernels are not 
displaced out of a lattice element

δx, δy, δz
δx, δy, δz

δx, δy, δz
maximum δx
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MCNP5 Stochastic Geometry - Testing

• MCNP5 stochastic geometry

• RSA placement of fuel kernels

Fuel kernels displaced randomly 
on-the-fly within a lattice element 
each time that neutron enters 

Fuel kernels placed randomly in job input, 
using Random Sequential Addition

Standard MCNP5 - geometry is fixed 
for entire calculation
(Does not use stochastic geometry)
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MCNP5 Stochastic Geometry - Testing

MCNP5 Results for Infinite Lattices of Fuel Kernels

• Small but significant effect from stochastic geometry,   -.15% Δk
• New MCNP5 stochastic geometry matches multiple realizations
• New MCNP5 stochastic geometry matches true random (RSA)

1.1510 ± 0.0003Multiple (25) realizations of randomly 
packed (RSA) fuel "box"

1.1513 ± 0.0004Multiple (25) realizations of lattice 
with randomly located spheres

1.1515 ± 0.0004Fixed lattice with randomly located 
spheres ("on the fly")

1.1531 ± 0.0004Fixed lattice with centered spheres

K-effectiveMethod
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HTGR Physics
&

Modeling
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HTGR Modeling with MCNP5

• Modeling HTGR core & assembly geometry is relatively 
straightforward using standard MCNP5 features

• We have examined in detail some of the fine-points of 
modeling 
– Fuel kernels embedded in the graphite matrix

• Lattice arrangements
• Stochastic effects

– Compacts or pebbles
• Embedding a lattice of fuel kernels

• We have run full-core HTGR calculations to examine 
the effects of detailed modeling techniques
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Core Assembly

CompactKernel

HTGR Modeling with MCNP5
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Fuel Kernels

• TRISO fuel kernels in graphite matrix
– Fuel kernel geometry & composition taken from the NGNP Point Design 

(MacDonald et al. 2003) 

Fuel kernel packing fraction  =  .289

TRISO Fuel Kernel Geometry and Composition 
 

Region 
#  

Name Outer radius 
( ) 

Composition Density 
(g/cc) 

1 Uranium oxycarbide 175 UCO (UC.5O1.5) 10.5 
2 Porous carbon buffer 275 C 1.0 
3 Inner pyrolytic carbon 315 C 1.9 
4 Silicon carbide 350 SiC 3.2 
5 Outer pyrolytic carbon 390 C 1.9 
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Simple cubic Body Centered Cubic Face Centered Cubic

Slice through base plane

Slice through mid plane

0.150819 cm0.119705 cm0.09501 cm

Fuel Kernel Modeling - Lattices
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Fuel Kernel Modeling - Results

• MCNP5 calculations for infinite geometry,
fuel kernels in graphite matrix

Configuration K-effective  ± 1σ

Homogenized matrix & fuel kernel 1.0996 ± .0008

Simple cubic lattice 1.1531 ± .0004
pitch = 0.09501 cm

Body centered cubic lattice 1.1534 ± .0003
pitch = 0.119705 cm

Face centered cubic lattice 1.1526 ± .0003
pitch = 0.150819 cm

➜ Large errors for homogenized model
➜ Essentially same results for all lattice models
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Fuel Kernels - Radial Flux Profiles

Six-Region Heterogeneous

Reflecting b.c. on all sides of cubes

Two-Region Heterogeneous
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Radial Neutron Flux Profile in 6-region Kernel
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Radial flux profile in energy group 6.57ev-6.77ev

0.00E+00

1.00E+01

2.00E+01

3.00E+01

4.00E+01

5.00E+01

6.00E+01

7.00E+01

8.00E+01

9.00E+01

1.00E+02

1.10E+02

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Radial bins (cm)

Fl
ux

 (/
cm

2) six-region case

two-region case

 

Radial Neutron Flux in Resonance Range

• Resonance Energy Range: 6.57eV - 6.77eV
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MCNP5 Simulations of Fuel Kernels

• Essential to model the microsphere heterogeneity

• Homogenizing the coatings into the matrix does not introduce any 
significant errors, & can reduce model complexity

• Adequate to explicitly represent just the UCO spheres

Configuration Kernel 
location keff std dev

Homogeneous 
microsphere cell - - - 1.0995 .0004

Two-region 
heterogeneous 
microsphere cell

Centered 1.1535 .0004

Six-region heterogeneous 
microsphere cell Centered 1.1533 .0003
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• If an infinite lattice of fuel kernels is embedded in a compact or pebble, 
clipping by the enclosing cylinder or sphere results in fragments of 
kernels. This is not correct modeling - does not preserve mass

• A finite lattice of fuel kernels should be used, so that there are no 
fragments. Vertical pitch of the lattice should be adjusted to 
preserve total mass or packing fraction.

Infinite lattice of kernels,
truncated by cylinder

Finite lattice of kernels,
no intersections with cylinder

HTGR Fuel Compact

Compact or Pebble Modeling

Bad Good
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Full-core Calculations

• Heterogeneous core, with simple cubic infinite lattice of kernels
(with partial kernels at cylinder boundary)

• Heterogeneous core, with simple cubic finite lattice of kernels
(with no partial kernels at cylinder boundary)

➜ Correct modeling of compacts, using a finite lattice to
avoid partial kernels at boundary, is important

1.0974 ± .0002
Heterogeneous core, with simple cubic 
fixed finite lattice (with no partial kernels at 
cylinder boundary)

F

1.0948 ± .0002
Heterogeneous core, with simple cubic 
fixed infinite lattice (with partial kernels at 
cylinder boundary)

E

K-effective ± 1σConfigurationCase



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       557

Full-core Calculations

• Heterogeneous core, simple cubic infinite lattice
• Heterogeneous core, simple cubic infinite lattice,

with new MCNP5 stochastic geometry

➜ Stochastic effects are small for full-core calculations, 
may or may not be important

1.0968 ± .0002

New MCNP5 stochastic geometry, on-the-
fly random location of kernels within 
simple cubic finite lattice elements  (with 
no partial kernels at cylinder boundary)

G

1.0974 ± .0002
Heterogeneous core, with simple cubic 
fixed finite lattice (with no partial kernels at 
cylinder boundary)

F

K-effective ± 1σConfigurationCase
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Conclusions

• The new stochastic geometry treatment for MCNP5 provides an 
accurate and effective means of modeling the particle 
heterogeneity in TRISO particle fuel

• Homogenizing the fuel or core introduces very large errors (~8%)
• Double heterogeneity important only in resonance energy range

– Increased resonance self-shielding due to "particle shadowing". 
– Effect is more pronounced for fuel kernel or compact 

calculations, and decreases as one goes to full core due to 
increased moderation hence decreased effect of resonance 
absorption

• The effect of choosing either centered fixed spheres or randomly 
located spheres is small

• Can introduce significant errors by using an infinite lattice 
truncated by compact or pebble (clipped), rather than a finite lattice

• Homogenizing the fuel coatings into the graphite matrix is a 
reasonable approximation
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From:  FB Brown, WR Martin, RD Mosteller,  "Monte Carlo - Advances and Challenges",
PHYSOR'08 Monte Carlo Workshop,  LA-UR-08-03328 (2008)

Coupled Monte Carlo
& Thermal-Hydraulics

Calculations
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Temperature Dependence

• Temperature effects on Monte Carlo 

• Accounting for temperature effects in MCNP
– Generate NJOY libraries during NTH iterations
– Generate NJOY libraries prior to the NTH iterations
– Pseudo-materials approach

• Applications
– Explicit coupling of MCNP5 and Star-CD for LWR configurations
– Explicit coupling of MCNP5 and RELAP-Athena for full-core 

VHTR simulation
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Temperature Dependence

• Temperature effects on Monte Carlo calculations
– Thermal expansion:     changes in dimensions and densities
– Cross-section data: 

• Need to Doppler broaden cross sections including resolved and 
unresolved resonances (probability tables) 

• Need to change S(α,β) thermal scattering kernel

• For most Monte Carlo codes, temperature effects must be handled 
explicitly by the code users
– Input changes are required to account for dimension & density changes
– Must use cross-section data generated at the correct problem 

temperatures
• MCNP 

– Automatically Doppler broadens elastic scattering cross-sections
– Does NOT adjust:

• resolved resonance data
• unresolved resonance data
• thermal scattering kernels
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Accounting for Temperature Effects in MCNP

Approaches to account for temperature 
changes:

A. Generate explicit temperature – dependent cross section 
libraries (NJOY)

B. Modify existing libraries (MAKXSF)

C. Approximate approach using pseudo-materials
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A. Generate explicit temp-dependent datasets (NJOY)

• Use NJOY (or similar cross-section processing code) to generate 
nuclear cross-section datasets

– Must generate a separate dataset for each nuclide at each region 
temperature

– NJOY routines take care of Doppler broadening (resolved & 
unresolved) & thermal scattering kernels 

• Two approaches:

– Iterative NJOY updates: run NJOY during the neutronic-
thermal/hydraulic (NTH) iterations for each temperature needed for the 
current T/H calculation. 

– Pregenerated NJOY libraries: run NJOY beforehand for a range of 
temperatures that adequately covers the temperatures expected for the 
NTH calculation, e.g., every 5K from 300K to 1200K for fuel nuclides.
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Computational results (Downar, Monterey 2007)

• Iterative NJOY updating is very time-consuming
– 95 s  to prepare a dataset for U-235 on 3 Ghz Pentium P4. 
– Not practical for realistic reactor applications.

• Pregenerated NJOY libraries is a reasonable approach
– Used to couple STAR-CD and MCNP 
– NJOY was run at 5K temperature increments over the temperature 

range. (Temperature increments of 1-2 K cause memory problems with 
MCNP.) 

– A Perl script was used to manage the NTH iterations. 
– The coupled code system (McStar) was applied to a 1/8 pin cell and a 

3x3 array of pin cells.
– Good agreement with DeCart/STAR-CD results 



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       567

McSTAR

• Monte Carlo Neutron 
Transport :   MCNP5

• Computational Fluid 
Dynamics :   STAR-CD

• Cross Sections:   NJOY
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•STAR-
CD

•MCNP

1/8 pin cell

3x3 array of pin cells
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Preliminary conclusions for McStar

• The preliminary results for two simple PWR test 
problems demonstrate the feasibility of coupling Monte 
Carlo to CFD for a potential audit tool.

• Validation of the cross section update methodology 
was performed to assess the accuracy of the 5K 
increment tables for these problems.

• McSTAR is now being applied to advanced BWR fuel 
assemblies with strong axial heterogeneities to verify 
the accuracy of the 2D/1D solution methods in DeCART 
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B. Modify exisiting MCNP library (MAKXSF)

• New version of MAKXSF

• Subset of NJOY routines, easy to use, part of MCNP5/1.51 
distribution

• For ACE datasets (for MCNP), makxsf performs: 
– Doppler broadening of resolved resonance data (explicit profiles)
– Interpolation of unresolved resonance data (probability tables) between 

ACE datasets at 2 different temperatures
– Interpolation of thermal scattering kernels (S(α,β) data) between ACE 

datasets at 2 different temperatures

• For now, makxsf is run external to MCNP

• Long-term plan: put the makxsf routines in-line with the MCNP 
coding
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• "Pseudo-materials" for temperature dependence

– Equivalent to  "stochastic interpolation"

– To approximate the cross-sections for nuclide X at temperature T, use a 
weighted combination of nuclide X at  lower  temperature T1 and higher 
temperature T2

– This weighted combination is input as an MCNP5 material with volume 
fractions given by the weights

C. Approximate method: pseudo-materials

1

2 1
2 1 2

1 1 2 2

, 1

( )
( )

−
−

= = −

Σ = Σ
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Pseudo-materials example – MCNP input

Example: 235U  at  500 K

Existing datasets for MCNP:
(1) dataset for 235U at   293.6 K: 92235.66c
(2) dataset for 235U at 3000.1 K: 92235.65c

Weight the datasets using T1/2 interpolation

In the MCNP input:
m1 92235.66c    .8611         92235.65c  .1389

500 293.6
2 13000.1 293.6

.1389, .8611−
−

= = =w w
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Application: VHTR geometry*
Normal:   explicit NJOY at given temperature 
Pseudo:  interpolate between closest NJOY

libraries (every 100K)

*JL Conlin, W Ji, JC Lee, WR Martin, "Pseudo-Material Construct for Coupled 
Neutronic-Thermal-Hydraulic Analysis of VHTGR", Trans. ANS 91 (2005)
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Application – LWR configuration
Results for LWR configuration with NJOY cross sections at 325K 
compared to pseudo-material approach using cross sections at 
300K and 350K. Most deviations within statistics. (Downar, 2007 
Monterey M&C)

325 K 
(NJOY)

325 K
Interpolated Deviation

keff
1.40974 

(± 0.00043)
1.41008

(± 0.00044)
34 pcm 

f in Fuel 1.37933
(± 0.0003)

1.37929
(± 0.0003)

0.00003

saFf
3.67362e-03 
(± 0.0006)

3.67648E-03
(± 0.0006)

0.0008

sff
5.62964e-03 
(± 0.0007)

5.63817E-03
(± 0.0007)

0.0010

nsff
1.38341e-02
(± 0.0007)

1.38548e-02
(± 0.0007)

0.0010
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Application – full core VHTR with T/H feedback

• MCNP5 code was coupled with the RELAP5-3D/ATHENA code to 
analyze full core VHTR with temperature feedback (pseudo-
materials) including explicit TRISO fuel

• Utilized a master process supervising independent computing platforms 
to automate coupled Nuclear-Thermal-Hydraulic (NTH) calculations.

• Axial power fractions determined for 10 axial zones for each of three 
rings by MCNP5 are input to RELAP5 to determine assembly-average 
temperature distributions. 

• Updated RELAP5 temperature distributions are used for the next 
MCNP simulation to obtain updated power fractions. MCNP5 and 
RELAP5 iterations were performed in a cyclic fashion until convergence 
in temperature and power distributions were obtained.

• Totally automated with a Perl script that reads output files and 
generates input files.
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Description of VHTR reactor

Inner	Ring	(30	Fuel	Blocks)

Middle	Ring	(36	Fuel	Blocks)

Outer	Ring	(36	Fuel	Blocks)

• Active Core Height: 7.93 m (10 blocks)
• Enrichment: 10.36%
• Natural Boron impurity: 6.9 ppm 
• Total Number of Fuel Blocks:1020

MCNP5 input decks were set up to represent the VHTR full core 
with homogeneous and heterogeneous fuel assemblies. 

Each ring has 10 axial fuel segments and 30, 36, and 36 fuel 
assemblies, respectively, for the inner, middle, and outer core 
rings.
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VHTR simulation - RELAP5 Methodology

• For RELAP5-3D/ATHENA calculations, the core was modeled 
consistent with the MCNP5 setup. 

• Each annular region is axially discretized into ten segments and is 
represented as a cylindrical coolant channel comprising a central 
coolant hole, surrounded by three inner graphite rings, four fuel 
rings, and one outer graphite ring. 

• An adiabatic boundary condition is imposed at the outer boundary 
of the coolant channel.
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RELAP5 Methodology (cont.)

Based on the NGNP target for the helium outlet temperature of 
1273 K, together with the inlet temperature of 763 K, helium mass 
flow rate was determined as 226 kg/s for rated power output of 600 
MWt.

•140

•

156 

•

145 

•110

•

142 

•

152 

•

154 

•160•200



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       579

VHTR - Cross Platform NTH Architecture
• MCNP5 was run on a Mac G5 Unix cluster in parallel. 10K particles 

per cycle were used with a total of 140 active cycles for each MCNP5 
calculation. 

• RELAP5 was run on a remote Windows server.
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VHTR - NTH Data Communication

• Data was communicated between MCNP5 and RELAP5 codes in a 
cyclic fashion until convergence in temperature and power 
distributions were obtained.

• Online monitoring of the RMSE was used to stop the iteration.
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RMS Error in Temperature vs. NTH Iteration
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Homogeneous Fuel

Converged Temperature/Power Distributions  
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Heterogeneous Fuel

Converged Temperature/Power Distributions
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Homogeneous vs Heterogeneous Fuel
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VHTR Temperature Feedback - Conclusions

• A cross-platform computer architecture connecting Mac G5 Unix 
cluster and a Windows server was successfully developed to 
automate the coupled NTH calculations for the VHTR core. 

• Online monitoring of RMSE shows that it converges rapidly (4-7 
iterations) 

• The converged power distributions are nearly independent of the 
double heterogeneity accounted for with MCNP5.

• We are now performing more highly resolved MCNP5 calculations 
with 100,000 histories per cycle and the effect of the 
heterogeneities appears to be more pronounced.

• The pseudo-material method works very well but the true test will 
be the above higher resolution cases. 
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Pseudo-materials – advantages/disadvantages

• Advantages
– Libraries needed at fewer temperatures (eg, every 100K) 
– Can interpolate to any temperature bounded by the library 

temperatures 
– No data preprocessing required

• Disadvantages
– Approximate interpolation - stochastic interpolation is not functional 

interpolation: one of the two datasets is chosen randomly during the 
random walk

– Finite error due to interpolation – seems to be small

– Cannot be used for S(α,β) thermal scattering kernels
• MCNP limitation: does not allow mixture of S(α,β) materials
• Need to pick S(α,β) dataset at nearest temperature
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From:  FB Brown, WR Martin, RD Mosteller,  "Monte Carlo - Advances and Challenges",
PHYSOR'08 Monte Carlo Workshop,  LA-UR-08-03328 (2008)

Fission Energy
Deposition
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Estimation of the Spatial Distribution of 
Fission Energy Deposition in a VHTR with 
(only) MCNP5

How to perform fission energy deposition 
calculations with standard MCNP tallies with 
application to a full core VHTR configuration.



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       589

Outline

• Acknowledgements

• Motivation and summary

• Fission energy release and deposition

• Capabilities and limitations of MCNP5 fission energy deposition 
tallies for reactor applications

• Methodology to account for fission energy deposition with MCNP5

• Application to VHTR configurations

• Alternative approach – a simplified methodology 



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       590

Acknowledgements

• This work is primarily the work of Etienne de Villèle, an exchange 
student from France who examined the coupling of MCNP5 and 
RELAP5 for temperature feedback in a VHTR. This work formed 
part of his MS thesis for CEA/INSTN.

• Other contributors, all from the Department of Nuclear 
Engineering and Radiological Sciences at the University of 
Michigan, include:
– John C. Lee, Professor
– Gokhan Yesilyurt, PhD Candidate
– Wei Ji, former PhD Candidate (now Professor at RPI) 



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       591

Motivation and summary

• Motivation – every few months there are conversations 
on the MCNP Forum regarding how MCNP handles 
fission energy deposition and how MCNP can be used 
to estimate the spatial distribution for a realistic 
reactor configuration.

• This talk is a summary of the process used at the 
University of Michigan to estimate the fission energy 
deposition in VHTR configurations. This is one 
approach that makes use of standard MCNP tallies and 
seemed to yield acceptable results. Comments or 
suggestions are welcome.
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Components of energy release in fission

Quantity Value(eV) Uncertainty  
Kinetic energy of the fragments 1.6912E+08 4.9000E+05 
Kinetic energy of the prompt neutrons 4.7900E+06 7.0000E+04 
Kinetic energy of the delayed neutrons 7.4000E+03 1.1100E+03 
Kinetic energy of the prompt gammas 6.9700E+06 5.0000E+05
Kinetic energy of the delayed gammas 6.3300E+06 5.0000E+04 
Total energy released by delayed betas 6.5000E+06 5.0000E+04 
Energy carried away by the neutrinos 8.7500E+06 7.0000E+04 
Total energy release per fission (sum) 2.0247E+08 1.3000E+05 
Total energy less neutrino energy 1.9372E+08 1.5000E+05 

Interpreted ENDF file for U-235e (ENDF/B-VI)

F7 tally includes items in red
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Sources of Fission Energy (recoverable)

Qf = kinetic energy of fission fragments
Qn = kinetic energy of fission neutrons
Qβ = beta decay energy from fission
Qγp = prompt gamma energy from fission
Qγd = delayed gamma energy from fission
Qγc = capture gamma energy from (n,γ) reactions

Q = Qf + Qn + Qβ + Qγp + Qγd + Qγc
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Energy Released per Fission (ENDF/B-VI)

Particle Notation
Energy 
released 
(MeV)

Deposition site

Fission 
products Qf 169.1 Local

Neutrons Qn 4.79 Global

Prompt 
gammas Qγp 6.97 Global

Betas Qβ 6.5 Local

Delayed 
gammas Qγd 6.33 Global

Capture 
gammas Qγc ~ 6 - 8 Global

Total Q 193.69
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Physical Assumptions

• Fission fragments and betas deposit their energy locally

• Prompt and delayed gammas (from fission product decay) deposit 
their energy globally and must be transported

• Fission neutrons must be transported and heat may be deposited 
during the neutron trajectory due to:
– deposition of kinetic energy during moderation
– emission of gammas as a result of neutron capture
– energy release due to fission. 

• Capture gammas are a distributed source of gammas throughout 
the reactor (including reflector) and they must be transported.
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MCNP5 Capabilities/Limitations

Tally          Accounts for energy deposition due to
F7:n Fission products, prompt gammas, and neutrons

F6:n Fission products and neutrons

F6:p Prompt gammas and capture gammas

F6:np Fission products, neutrons, prompt gammas, and
capture gammas (F6:n + F6:p) 

§ F7 tally does not account for delayed gammas, betas, or capture gammas. 
§ No tallies account for betas or delayed gammas which comprise 6-7% of 
the fission energy release
§ This is not a problem if one assumes all fission energy is locally deposited 
because the power normalization is arbitrary.
§ An accurate prediction of the spatial distribution of fission energy 
deposition, including neutron and gamma transport effects, should include 
contributions of the betas and delayed gammas.
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Overall Approach to Compute Spatial Deposition

• Goal:   Compute H(r),  where H(r)dr = amount of energy/s 
deposited in dr about r in a reactor (including reflector) at power 
P, accounting for all sources of fission energy.

• Use standard F6 / F7 tallies in MCNP5

• Use reasonable models for those quantities that are unknown or 
not treated by MCNP5

– Beta energy is deposited locally and can be scaled from the 
conventional F7 tally.

– Delayed gamma energy is deposited with the same spatial distribution 
as the prompt gamma energy
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Overall methodology to estimate H(r)
• Run multiple MCNP runs to get all contributions to the overall fission 

energy deposition. 

– Prompt gammas (Hgp): F6:p  tally with  PIKMT card. 
– Capture gammas (Hgc): F6:p  tally with  PIKMT card.
– Delayed gammas (Hgd): Scale Hgp by Qgd/Qgp.
– Fission products + neutrons (Hfn ):    regular F6:n tally.
– Betas (Hb): Scale regular F7:n tally by Qb/QF7, 

where QF7 = 180.88 MeV for U-235 fuel. 

• Each run, scaled as indicated, yields a spatially dependent 
contribution to H(r). The total is a simple sum of the individual 
contributions since they are scaled properly. 

H(r) =  Hfn +  Hgp + Hgc + Hgd + Hb

• Scale H(r) to get correct total power P. 
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Summary of overall methodology

Particle Notation
Energy 
released 
(MeV)

MCNP 
Tally Method

Fission 
products Qf 169.1 F6:n Normal

Neutrons Qn 4.79 F6:n Normal

Prompt 
gammas Qγp 6.97 F6:p PIKMT

Betas Qβ 6.5 F7:n Scaled

Delayed 
gammas Qγd 6.33 F6:p Scaled

Capture 
gammas Qγc ~ 6 - 8 F6:p PIKMT

Total Q 193.69
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Tallied depositions for VHTR Configurations

ENDF/B-
VI

TRISO 
particle

Hom full 
core

Het full 
core

Fission products and 
neutrons 173.89 171.59 173.45 173.26

Prompt gammas 6.97 6.7 6.71 6.78
Delayed gammas 6.33 6.33 6.44 6.50
Betas 6.5 6.5 6.5 6.5

Subtotal 193.69 191.12 193.1 193.05
Capture gammas - 6.96 4.36 3.70

Total 198.02 197.46 196.74
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Power distribution* for full core VHTR (het fuel)

*Error in simulation resulted in zero top and bottom reflector deposition rates



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       602

Alternative approach – a simplified methodology

• Multiple MCNP5 runs, especially with PIKMT cards 
active, are very time-consuming. Not practical for 
coupled MCNP5/RELAP5 calculations.

• In principle, MCNP5 could be modified to tally these 
quantities directly. This is probably a low-priority 
change since work-arounds can yield acceptable 
results.

• An alternative approach is based on the observation 
that the F6:n tally accounts for global transport of 
neutrons and perhaps the spatial distribution of the 
neutron tally might approximate reasonably well the 
spatial distribution of the overall fission energy 
deposition.  



Monte Carlo Techniques for Nuclear Systems – Theory Lectures LA-UR-16-29043       603

Comparison of F6:n with overall heat deposition*

*Ratio of F6:n tally to benchmark fission energy deposition
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Simplified methodology – preliminary thoughts

• The F6:n tally (arbitrary normalization) yields fractional energy 
depositions in the core regions which are 88-90% of the 
benchmark fission energy fractions and within 25-27% for the 
reflector regions. 

• Although this ratio may change by ~10% in the reflector, only a 
few % of the fission energy is deposited in the reflector.   

• Implication: the F6:n tally, with prior calculations to estimate 
ratios of the F6:n tally to the true heat deposition tally in the core 
and reflector regions, may provide a very efficient and reasonably 
accurate method to estimate the fission power distribution in a 
realistic reactor configuration.

• These are preliminary results and more work needs to be done to 
assess the sensitivity of these ratios and to examine the 
possibility of using other tallies.


